【题目】按下列要求分配6本不同的书,各有多少种不同的分配方式?
(1)分成三份,1份1本,1份2本,1份3本;
(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;
(3)平均分成三份,每份2本;
(4)平均分配给甲、乙、丙三人,每人2本;
(5)分成三份,1份4本,另外两份每份1本;
(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;
(7)甲得1本,乙得1本,丙得4本.
【答案】(1)60;(2)360;(3)15;(4)90;(5)15;(6)90;(7)70
【解析】
(1)根据组合问题,分步依次选出三种选法,相乘即可得到总的方法数。
(2)根据组合,先求出三种符合要求的算法。再对三种进行全排列即可。
(3)列出分成三组的不同组合数,注意去掉重复的情况。
(4)分成三组的不同组合数,去掉重复情况后,再对三组进行全排列即可。
(5)根据组合特征,求得分组情况,去掉重复部分即可。
(6)利用组合求得分组情况,并去掉重复部分后,对三组进行全排列。
(7)根据排列数计算,得到无重复的无序组数。
(1)无序不均匀分组问题.先选本有种选法;再从余下的本中选本有种选法;最后余下的本全选有种选法.故共有 (种)选法.
(2)有序不均匀分组问题.由于甲、乙、丙是不同三人,在题的基础上,还应考虑再分配,共有.
(3)无序均匀分组问题.先分三步,则应是种选法,但是这里出现了重复.不妨记六本书为,,,,,,若第一步取了,第二步取了,第三步取了,记该种分法为(,,),则种分法中还有(,,),(,,),(,,),(,,),(,,),共有种情况,而这种情况仅是,,的顺序不同,因此只能作为一种分法,故分配方式有.
(4)有序均匀分组问题.在题的基础上再分配给个人,共有分配方式 (种).
(5)无序部分均匀分组问题.共有 (种)分法.
(6)有序部分均匀分组问题.在题的基础上再分配给个人,共有分配方式 (种).
(7)直接分配问题.甲选本有种选法,乙从余下本中选本有种选法,余下本留给丙有种选法,共有 (种)选法.
科目:高中数学 来源: 题型:
【题目】在公差不为0的等差数列{an}中,a1+a5=ap+aq , 记 + 的最小值为m,若数列{bn}满足bn>0,b1= m,bn+1是1与 的等比中项,若bn 对任意n∈N*恒成立,则s的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在空间四边形ABCD(A,B,C,D不共面)中,一个平面与边AB,BC,CD,DA分别交于E,F,G,H(不含端点),则下列结论错误的是( )
A.若AE:BE=CF:BF,则AC∥平面EFGH
B.若E,F,G,H分别为各边中点,则四边形EFGH为平行四边形
C.若E,F,G,H分别为各边中点且AC=BD,则四边形EFGH为矩形
D.若E,F,G,H分别为各边中点且AC⊥BD,则四边形EFGH为矩形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(, 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;
(1)求曲线的极坐标方程;
(2)在曲线上取两点, 与原点构成,且满足,求面积的最大值.
【答案】(1);(2)
【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为,
,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得
可得曲线C的极坐标方程.
(2)由(1)不妨设M(),,(),
,
,
由此可求面积的最大值.
试题解析:(1)由题意可知直线的直角坐标方程为,
曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为,
所以曲线C的极坐标方程为,
即.
(2)由(1)不妨设M(),,(),
,
,
当 时, ,
所以△MON面积的最大值为.
【题型】解答题
【结束】
23
【题目】已知函数的定义域为;
(1)求实数的取值范围;
(2)设实数为的最大值,若实数, , 满足,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , Sn=n2+n.
(Ⅰ)求{an}的通项公式an;
(Ⅱ)若ak+1 , a2k , a2k+3(k∈N*)恰好依次为等比数列{bn}的第一、第二、第三项,求数列{ }的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量a=(1,sin x),b=,函数f(x)=a·b-cos 2x.
(1)求函数f(x)的解析式及其单调递增区间;
(2)当x∈时,求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一同学在电脑中打出若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前2012个圈中的●的个数是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年6月14日,第二十一届世界杯足球赛将在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下列联表.
(1)将列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?
(2)在不喜爱足球运动的观众中,按性别分别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com