精英家教网 > 高中数学 > 题目详情

【题目】已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,第一道审核、第二道审核、第三道审核通过的概率分别为,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.

(1)求审核过程中只通过两道程序的概率;

(2)现有3部该智能手机进入审核,记这3部手机可以出厂销售的部数为,求的分布列及数学期望.

【答案】 (1) (2)详见解析

【解析】试题分析:(1)根据题意只通过两道程序是指前两道通过,第三道未通过,利用相互独立事件的概率乘法公式即可做出结果;(2)计算出每部智能手机可以出厂销售的概率为的次数的取值是,根据互斥事件和相互独立事件同时发生的概率列出分布列,最后做出分布列和期望即可.

试题解析:(1)设审核过程中只通过两道程序为事件,则.

2)每部该智能手机可以出厂销售的概率为.

由题意可得可取,则有,.

所以的分布列为:

().

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线 ,曲线 为参数),以坐标原点为极点, 轴正半轴为极轴,建立极坐标系.

(Ⅰ)求曲线 的极坐标方程;

(Ⅱ)曲线 为参数, )分别交 两点,当取何值时, 取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中点,F在棱AC上,且AF=3FC

(1)求三棱锥D-ABC的体积

(2)求证:平面DAC⊥平面DEF;

(3)若MDB中点,N在棱AC上,且CN=CA,求证:MN∥平面DEF

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)当时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列{an}的首项a1=1,Sn是数列{an}的前n项和,且满足:anSn+1﹣an+1Sn+an﹣an+1= anan+1 , 则 S12=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求的单调区间;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第年与年销量(单位:万件)之间的关系如下表:

(1)在图中画出表中数据的散点图;

(2)根据散点图选择合适的回归模型拟合的关系(不必说明理由);

(3)建立关于的回归方程,预测第5年的销售量.

附注:参考公式:回归直线的斜率和截距的最小二乘法估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,底面为正三角形, 底面 的中点.

(1)求证: 平面

(2)求证:平面平面

3)在侧棱上是否存在一点使得三棱锥的体积是若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案