精英家教网 > 高中数学 > 题目详情

【题目】某中学举行了科学防疫知识竞赛.经过选拔,甲、乙、丙三位选手进入了最后角逐.他们还将进行四场知识竞赛.规定:每场知识竞赛前三名的得分依次为abc,且ab);选手总分为各场得分之和.四场比赛后,已知甲最后得分为16分,乙和丙最后得分都为8分,且乙只有一场比赛获得了第一名,则下列说法正确的是(

A.每场比赛的第一名得分a4

B.甲至少有一场比赛获得第二名

C.乙在四场比赛中没有获得过第二名

D.丙至少有一场比赛获得第三名

【答案】C

【解析】

根据四场比赛总得分,结合abc满足的条件,可求出abc,再根据已知的得分情况,确定甲、乙、丙的得分情况,问题即可解决.

∵甲最后得分为16分,

接下来以乙为主要研究对象,

①若乙得分名次为:1场第一名,3场第二名,则,则,而,则

,此时不合题意;

②若乙得分名次为:1场第一名,2场第二名,1场第三名,则,则

,且ab可知,此时没有符合该不等式的解,不合题意;

③若乙得分名次为:1场第一名,1场第二名,2场第三名,则,则

,且ab可知,此时没有符合该不等式的解,不合题意;

④若乙得分名次为:1场第一名,3场第三名,则,此时显然

则甲的得分情况为3场第一名,1场第三名,共分,

乙的得分情况为1场第一名,3场第三名,共分,

丙的得分情况为4场第二名,则,即,此时符合题意.

综上分析可知,乙在四场比赛中没有获得过第二名.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方()队和联合军乐团,总规模约15万人,是近几次阅兵中规模最大的一次.其中,徒步方队15个.为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行.徒步方队队员,男性身高普遍在175cm185cm之间;女性身高普遍在163cm175cm之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184cm190cm之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C为事件:某一阅兵女子身高不低于169cm,根据直方图得到P(C)的估计值为05

(1)求直方图中ab的值;

(2)估计这个阵营女子身高的平均值 (同一组中的数据用该组区间的中点值为代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某四棱锥的三视图如图所示,则它的体积为_______,表面积为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C关于x轴、y轴都对称,并且经过两点

1)求椭圆C的离心率和焦点坐标;

2D是椭圆C上到点A最远的点,椭圆C在点B处的切线ly轴交于点E,求△BDE外接圆的圆心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为4的菱形中,于点,将沿折起到的位置,使,如图2.

(1)求证:平面

(2)求二面角的余弦值;

(3)判断在线段上是否存在一点,使平面平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷集合AB,且,记,定义:满足时,则称集合AB互为完美加法补集”.

(Ⅰ)已知集合.判断20192020是否属于集合,并说明理由;

(Ⅱ)设集合.

(ⅰ)求证:集合AB互为完美加法补集

(ⅱ)记分别表示集合AB中不大于n)的元素个数,写出满足的元素n的集合.(只需写出结果,不需要证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂预购软件服务,有如下两种方案:

方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;

方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.

(1)设日收费为元,每天软件服务的次数为,试写出两种方案中的函数关系式;

(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点分别在轴、轴上运动,,点在线段上,且.

1)求点的轨迹方程;

2)动直线交于不同的两点,且的面积为,其中为坐标原点,证明为定值.

查看答案和解析>>

同步练习册答案