精英家教网 > 高中数学 > 题目详情
函数y=
1-tan2x1+tan2x
的值域是
(-1,1]
(-1,1]
分析:确定函数的定义域,化简函数,即可求出函数的值域.
解答:解:由题意,函数的定义域为{x|x≠kπ+
π
2
,k∈Z}
y=
1-tan2x
1+tan2x
=cos2x
x≠kπ+
π
2

∴函数y=
1-tan2x
1+tan2x
的值域是(-1,1].
故答案为(-1,1].
点评:本题考查三角函数的化简,考查函数的值域,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列函数的值域
(1)y=
3sinx+1
3sinx+2

(2)y=
1-tan2(
π
4
-x)
1+tan2(
π
4
-x)

查看答案和解析>>

科目:高中数学 来源: 题型:

关于下列命题:
①函数y=tanx在第一象限是增函数;
②函数y=cos2(
π
4
-x)
是偶函数;
③函数y=4sin(2x-
π
3
)
的一个对称中心是(
π
6
,0);
④cos(x+y)+cos(x-y)=2cosxcosy
⑤cos2α(1+tan2α)=1
写出所有正确的命题的题号:
③④⑤
③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)函数y=3sin
x
2
+4cos
x
2
的定义域为[0,2π],则值域为[-5,5];
(2)三角方程tan(5x+
9
)=
2
在[0,π]内有5个解;
(3)对任意的α∈R,三角公式sin2α=
2tanα
1+tan2α
是一定成立的;
(4)函数y=cosx与y=arccosx(|x|≤1)互为反函数.
其中正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知问题“设正数x,y满足
1
x
+
2
y
=1
,求x+y的最值”有如下解法;
1
x
=cos2α,
2
y
=sin2α,α∈(0,
π
2
)

则x=sec2α=1+tan2α,y=2csc2α=2(1+cot2α),
所以,x+y=3+tan2α+2cot2α=3+tan2+
2
tan2α
≥3+2
2
,等号成立当且仅当tan2α=
2
tan2α
,即tan2α=
2
,此时x=1+
2
,y=2+
2

(1)参考上述解法,求函数y=
1-x
+2
x
的最大值.
(2)求函数y=2
x+1
-
x
(x≥0)
的最小值.

查看答案和解析>>

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:013

已知函数y=f(x)的反函数是f-1(x)=logsec2θ(+tan2θ),θ∈(0,),则方程f(x)=2003的解集为

[  ]

A.{-1}
B.{-1,1}
C.{1}
D.

查看答案和解析>>

同步练习册答案