精英家教网 > 高中数学 > 题目详情
如图:C、D是以AB为直径的圆上两点,在线段上,且 ,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上.

(I)求证平面ACD⊥平面BCD;
(II)求证:AD//平面CEF.
见解析
本试题主要是证明面面垂直和线面平行的问题的运用。
(1)利用面面垂直的判定定理,先证明线面垂直,然后得到结论。
(2)要证明线线平行,结合线面平行的判定定理和相似三角形,全等三角形得到线线平行,最后得证。解:(I)证明:依题意:

……3分
…………4分
(Ⅱ)证明:,联结,在……6分
,则,在,即,解得  …………10分//在平面//平面
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)   
如图,已知分别是正方形的中点,交于点都垂直于平面,且是线段上一动点.

(Ⅰ)求证:平面平面
(Ⅱ)试确定点的位置,使得平面
(Ⅲ)当中点时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥的底面为正方形,侧棱底面,且分别是线段的中点.

(Ⅰ)求证://平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知四棱锥的底面为菱形,且.

(I)求证:平面平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知平面平面,矩形的边长.

(Ⅰ)证明:直线平面
(Ⅱ)求直线和底面所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为2的正方体ABCD-A1B1C1D1中,E是BC的中点,F是DD1的中点,
求点A到平面A1DE的距离;
求证:CF∥平面A1DE,
求二面角E-A1D-A的平面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中错误的是.
A.若,则
B.若,则
C.若,则
D.若=AB,//AB,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a、b是不重合的两个平面,mn是直线,下列命题中不正确的是(  )
A.若mnm^a,则n^aB.若m^a,mÌb,则a^b
C.若m^a,a∥b,则m^bD.若a^b,mÌa,则m^b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间中,a,b是不重合的直线,α,β是不重合的平面,则下列条件中可推出a∥b的是:
A.aα,bβ α∥βB.a⊥α b⊥α
C.a∥αbαD.a⊥α bα

查看答案和解析>>

同步练习册答案