精英家教网 > 高中数学 > 题目详情

已知函数,其中.
(1)当时判断的单调性;
(2)若在其定义域为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有成立,求实数的取值范围.

(1)增函数;(2);(3) .

解析试题分析:(1) 本小题首先求得函数的定义域,再利用导数的公式和法则求得函数的导函数,发现其在恒大于零,于是可知函数上单调递增;(2) 本小题首先求得函数的定义域,再利用导数的公式和法则求得函数的导函数,根据函数在其定义域内为增函数,所以,然后转化为最值得求解;(3)本小题首先分析“,总有成立”等价于 “上的最大值不小于上的最大值”,于是问题就转化为求函数的最值.
试题解析:(1)的定义域为,且>0
所以f(x)为增函数.                          3分
(2)的定义域为
                     5分
因为在其定义域内为增函数,所以

,当且仅当时取等号,所以      9分
(3)当时,

时,;当时,
所以在上,                    11分
而“,总有成立”等价于
上的最大值不小于上的最大值”
上的最大值为
所以有

所以实数的取值范围是                    14分
考点:1.导数公式与法则;2.函数的单调性;3.等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数(其中).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数上单调递增,求实数的取值范围.
(2)记函数,若的最小值是,求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,().
(1)设,令,试判断函数上的单调性并证明你的结论;
(2)若的定义域和值域都是,求的最大值;
(3)若不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若是增函数,求的取值范围;
(2)已知,对于函数图象上任意不同两点,,其中,直线的斜率为,记,若求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数 .
(I)求的极大值和极小值;
(II)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=alnx+(a≠0)在(0,)内有极值.
(I)求实数a的取值范围;
(II)若x1∈(0,),x2∈(2,+∞)且a∈[,2]时,求证:f(x2)﹣f(x1)≥ln2+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象如图,直线在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为.

(1)求的解析式;
(2)若常数,求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)当时,写出函数的单调递增区间;
(2)当时,求函数在区间[1,2]上的最小值;
(3)设,函数在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).

查看答案和解析>>

同步练习册答案