A. | -144 | B. | -120 | C. | -80 | D. | -60 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用线性规划的知识先求出a=5,然后利用二项式定理的内容进行求解即可.
解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即A(2,1),代入目标函数z=2x+y得z=2×2+1=5.
即目标函数z=2x+y的最大值为a=5,
(x+$\frac{1}{x}$-2)a=(x+$\frac{1}{x}$-2)5,
∵x2=x•x•1×1×1=x•x•x•$\frac{1}{x}$×1,
∴(x+$\frac{1}{x}$-2)a的展开式中x2的系数为${C}_{5}^{2}$•(-2)3+${C}_{5}^{3}•{C}_{2}^{1}•(-2)$=-80-40=-120,
故选:B
点评 本题主要考查线性规划和二项式定理的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.综合性较强,有一定的难度.
科目:高中数学 来源: 题型:选择题
A. | [2,+∞) | B. | (0,1) | C. | [2,3) | D. | (2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | -8 | C. | -2 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
会俄语 | 不会俄语 | 总计 | |
男 | |||
女 | |||
总计 | 30 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com