精英家教网 > 高中数学 > 题目详情
12.已知变量x,y满足$\left\{{\begin{array}{l}{1≤x+y≤3}\\{-1≤x-y≤1}\end{array}}$,若目标函数z=2x+y取到最大值a,则(x+$\frac{1}{x}$-2)a的展开式中x2的系数为(  )
A.-144B.-120C.-80D.-60

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用线性规划的知识先求出a=5,然后利用二项式定理的内容进行求解即可.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即A(2,1),代入目标函数z=2x+y得z=2×2+1=5.
即目标函数z=2x+y的最大值为a=5,
(x+$\frac{1}{x}$-2)a=(x+$\frac{1}{x}$-2)5
∵x2=x•x•1×1×1=x•x•x•$\frac{1}{x}$×1,
∴(x+$\frac{1}{x}$-2)a的展开式中x2的系数为${C}_{5}^{2}$•(-2)3+${C}_{5}^{3}•{C}_{2}^{1}•(-2)$=-80-40=-120,
故选:B

点评 本题主要考查线性规划和二项式定理的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数y=loga(x2-ax+2)在区间[0,1]上是单调减函数,则实数a的取值范围是(  )
A.[2,+∞)B.(0,1)C.[2,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图1,已知矩形ABCD中,AB=2,AD=2$\sqrt{2}$,E,F分别是AD,BC的中点,对角线BD与EF交于O点,沿EF将矩形ABFE折起,使平面ABFE与平面EFCD所成角为60°.在图2中:
(1)求证:BO⊥DO;
(2)求平面DOB与平面BFC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.1-$\frac{1}{2}$=$\frac{1}{2}$…①,
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$=$\frac{1}{3}$+$\frac{1}{4}$…②,
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$=$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$…③,…
根据以上事实,由归纳推理可得:
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$+$\frac{1}{7}$-$\frac{1}{8}$=$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$
当n∈N*时,1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$…+$\frac{1}{200n-1}$-$\frac{1}{200n}$=$\frac{1}{100n+1}$+…+$\frac{1}{200n-1}$+$\frac{1}{200n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列1,2,3,4,5,6,…,n,…是一个首项为1,公差为1的等差数列,其通项公式an=n,前n项和Sn=$\frac{(1+n)n}{2}$.若将该数列排成如图的三角形数阵的形式,根据以上排列规律,数阵中的第n行(n≥3)的第3个(从左至右)数是$\frac{(n-1)n}{2}$+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow a$=(4,8),$\overrightarrow b$=(x,4),且$\overrightarrow a∥\overrightarrow b$,则x的值是(  )
A.2B.-8C.-2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在平面直角坐标系中,直线l的参数方程是$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}$(t为参数).以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C的方程是ρ=4cosθ.
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)若直线l与曲线C相交于A、B两点,且|AB|=$\sqrt{14}$,求直线l的倾斜角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.第12届全国人大四次会议于2016年3月5日至3月16日在北京召开.为了搞好对外宣传工作,会务组选聘了16名男记者和14名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.
(1)根据以上数据完成以下2×2列联表:
会俄语不会俄语总计
总计30
(2)能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?
下面的临界值表供参考:
 P(K2≥k)0.150.100.050.0250.0100.0050.001
  k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1(-c,0),右焦点F2(c,0),若椭圆上存在一点P,使|PF1|=2c,∠F1PF2=30°,则该椭圆的离心率e为$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

同步练习册答案