精英家教网 > 高中数学 > 题目详情

【题目】(本题满12分) 已知集合在平面直角坐标系中,点M的坐标为(x,y) ,其中

1)求点M不在x轴上的概率;

2)求点M正好落在区域上的概率。

【答案】

(1)

(2)

【解析】解:(1集合A={-2,0,1,3},点M(x,y)的坐标

点M的坐标分别是:(-2,-2),(-2,0),(-2,1),(-2,3);(0,-2),(0,0),(0,1),(0,3);

(1, -2),(1,0),(1,1),(1, 3);(3,-2),(3,0),(3,1),(3,3)共16种

点M不在x轴上的坐标共有12种:(-2,-2),(0,-2),(-2,1),(-2,3);(1,-2),(0,1),(1,1),(1,3);(3,-2),(0,3),(3,1),(3,3)所以点M不在x轴上的概率是

(2)点M正好落在区域上的坐标共有3种:(1,1),(1,3),(3,1)

故M正好落在该区域上的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(Ⅰ)已知 是空间的两个单位向量,它们的夹角为60°,设向量 .求向量 的夹角; (Ⅱ)已知 是两个不共线的向量, .求证: 共面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在平面直角坐标系xOy中,椭圆C (ab>0)的离心率为且过点(1,).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线lxm(ma)于点M.已知点B(1,0),直线PBl于点N

(Ⅰ)求椭圆C的方程;

(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离比到定直线的距离小1.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点.设线段 的中点分别为,求证:直线恒过一个定点;

(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=
(1)写出直线l的极坐标方程与曲线C的普通方程;
(2)若点 P是曲线C上的动点,求 P到直线l的距离的最小值,并求出 P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列四个命题:
p1:若直线l和平面α内的无数条直线垂直,则l⊥α;
p2:若f(x)=2x﹣2x , 则x∈R,f(﹣x)=﹣f(x);
p3:若 ,则x0∈(0,+∞),f(x0)=1;
p4:在△ABC中,若A>B,则sinA>sinB.
其中真命题的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求证:f(x)为奇函数;
(3)若f(k3x)+f(3x﹣9x﹣4)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形.

(1)求椭圆的方程;

(2)动直线 )交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f(x)>0成立的x的取值范围是

查看答案和解析>>

同步练习册答案