【题目】在无穷数列中,,对于任意,都有,. 设, 记使得成立的的最大值为.
(1)设数列为1,3,5,7,,写出,,的值;
(2)若为等差数列,求出所有可能的数列;
(3)设,,求的值.(用表示)
【答案】(1),,;(2);(3).
【解析】试题分析:(1)根据使得成立的的最大值为,,则,,则,,则,这样就写出,,的值;(2)若为等差数列,先判断,再证明,即可求出所有可能的数列;(3)确定,,依此类推,发现规律,得出,从而求出的值.
试题解析:(1),,. 3分
(2)由题意,得,
结合条件,得. 4分
又因为使得成立的的最大值为,使得成立的的最大值为,
所以,. 5分
设,则.
假设,即,
则当时,;当时,.
所以,.
因为为等差数列,
所以公差,
所以,其中.
这与矛盾,
所以. 6分
又因为,
所以,
由为等差数列,得,其中. 7分
因为使得成立的的最大值为,
所以,
由,得. 8分
(3)设,
因为,
所以,且,
所以数列中等于1的项有个,即个; 9分
设,
则, 且,
所以数列中等于2的项有个,即个; 10分
以此类推,数列中等于的项有个. 11分
所以
.
即. 13分
科目:高中数学 来源: 题型:
【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是DD1的中点,
(1)求证:CF∥平面A1DE;
(2)求二面角A1﹣DE﹣A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥D﹣ABC中,AB=BC=1,AD=2,BD= ,AC= ,BC⊥AD,则三棱锥的外接球的表面积为( )
A. π
B.6π
C.5π
D.8π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是空间两条直线, 是空间两个平面,则下列命题中不正确的是( )
A. 当时,“”是“”的充要条件
B. 当时,“”是“”的充分不必要条件
C. 当时,“”是“”的必要不充分条件
D. 当时,“”是“”的充分不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数 ,x∈[0,9]的值域为集合B,
(1)求A∩B;
(2)若C={x|3x<2m﹣1},且(A∩B)C,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数 ,我们把使 的实数 叫做函数 的零点,且有如下零
点存在定理:如果函数 在区间 上的图像是连续不断的一条曲线,并且有 ,那么,函数 在区间 内有零点.给出下列命题:
①若函数 在 上是单调函数,则 在 上有且仅有一个零点;
②函数 有 个零点;
③函数 和 的图像的交点有且只有一个;
④设函数 对 都满足 ,且函数 恰有 个不同的零点,则这6个零点的和为18;
其中所有正确命题的序号为________.(把所有正确命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=loga(3﹣ax)(a>0,a≠1)
(1)当a=2时,求函数f(x)的定义域;
(2)是否存在实数a,使函数f(x)在[1,2]递减,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图平行四边形ABCD中,∠DAB=60°,AB=2,AD=2,M为CD边的中点,沿BM将△CBM折起使得平面BMC⊥平面ABMD.
(1)求四棱锥C﹣ADMB的体积;
(2)求折后直线AB与平面AMC所成的角的正弦.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对定义域分别为D1 , D2的函数y=f(x),y=g(x),规定:函数h(x)= ,f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),则h(x)的单调减区间是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com