精英家教网 > 高中数学 > 题目详情

【题目】在无穷数列中,,对于任意,都有. , 记使得成立的的最大值为.

1)设数列1357,写出的值;

2)若为等差数列,求出所有可能的数列

3)设,求的值.(用表示)

【答案】1;(2;(3

【解析】试题分析:(1)根据使得成立的的最大值为,则,则,则,这样就写出的值;(2)若为等差数列,先判断,再证明,即可求出所有可能的数列;(3)确定,依此类推,发现规律,得出,从而求出的值.

试题解析:(1. 3

2)由题意,得

结合条件,得. 4

又因为使得成立的的最大值为,使得成立的的最大值为

所以. 5

,则.

假设,即

则当时,;当时,.

所以.

因为为等差数列,

所以公差

所以,其中.

这与矛盾,

所以. 6

又因为

所以

为等差数列,得,其中. 7

因为使得成立的的最大值为

所以

,得. 8

3)设

因为

所以,且

所以数列中等于1的项有个,即个; 9

, 且

所以数列中等于2的项有个,即个; 10

以此类推,数列中等于的项有. 11

所以

.

. 13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是DD1的中点,
(1)求证:CF∥平面A1DE;
(2)求二面角A1﹣DE﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥D﹣ABC中,AB=BC=1,AD=2,BD= ,AC= ,BC⊥AD,则三棱锥的外接球的表面积为(
A. π
B.6π
C.5π
D.8π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是空间两条直线, 是空间两个平面,则下列命题中不正确的是( )

A. 时,“”是“”的充要条件

B. 时,“”是“”的充分不必要条件

C. 时,“”是“”的必要不充分条件

D. 时,“”是“”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数 ,x∈[0,9]的值域为集合B,
(1)求A∩B;
(2)若C={x|3x<2m﹣1},且(A∩B)C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数 ,我们把使 的实数 叫做函数 的零点,且有如下零

点存在定理:如果函数 在区间 上的图像是连续不断的一条曲线,并且有 ,那么,函数 在区间 内有零点.给出下列命题:

若函数 上是单调函数,则 上有且仅有一个零点;

函数 个零点;

函数 的图像的交点有且只有一个;

设函数 都满足 ,且函数 恰有 个不同的零点,则这6个零点的和为18

其中所有正确命题的序号为________(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=loga(3﹣ax)(a>0,a≠1)
(1)当a=2时,求函数f(x)的定义域;
(2)是否存在实数a,使函数f(x)在[1,2]递减,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图平行四边形ABCD中,∠DAB=60°,AB=2,AD=2,M为CD边的中点,沿BM将△CBM折起使得平面BMC⊥平面ABMD.

(1)求四棱锥C﹣ADMB的体积;
(2)求折后直线AB与平面AMC所成的角的正弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义域分别为D1 , D2的函数y=f(x),y=g(x),规定:函数h(x)= ,f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),则h(x)的单调减区间是

查看答案和解析>>

同步练习册答案