【题目】对于双曲线:(),若点满足,则称在的外部;若点满足,则称在的内部.
(1)证明:直线上的点都在的外部.
(2)若点的坐标为,点在的内部或上,求的最小值.
(3)若过点,圆()在内部及上的点构成的圆弧长等于该圆周长的一半,求、满足的关系式及的取值范围.
【答案】(1)见解析 (2) 最小值为.(3) ,的取值范围为.
【解析】
(1)设直线上的点坐标为,代入双曲线方程检验;
(2)设点,由题设.,求得这个式子的最小值即可.
(3)由于圆和双曲线均关于坐标轴和原点对称,所以只需考虑这两个曲线在第一象限及、轴正半轴的情况.圆与双曲线的交点平分该圆在第一象限内的圆弧,它们交点的坐标为.代入双曲线方程得(*),双曲线过点,得,消去得.
由得的取值范围.
(1)设直线上点的坐标为,代入,
得,
对于,,因此,直线上的点都在的外部.
(2)设点的坐标为,由题设.
,由,得,
对于,有,于是,
因此,的最小值为.
(3)因为圆和双曲线均关于坐标轴和原点对称,所以只需考虑这两个曲线在第一象限及、轴正半轴的情况.
由题设,圆与双曲线的交点平分该圆在第一象限内的圆弧,它们交点的坐标为.…
将,代入双曲线方程,得(*),
又因为过点,所以,
将代入(*)式,得.
由,解得.因此,的取值范围为.
科目:高中数学 来源: 题型:
【题目】对于定义在上的函数,有下述命题:①若是奇函数,则的图象关于点对称;②函数的图象关于直线对称,则为偶函数;③若对,有,则2是的一个周期;④函数与的图象关于直线对称.其中正确的命题是______.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为(为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;
(Ⅱ)若直线经过曲线的焦点且与曲线相交于两点,设线段的中点为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列与满足,.
(1)若,求数列的通项公式;
(2)若,且数列是公比等于2的等比数列,求的值,使数列也是等比数列;
(3)若,且,数列有最大值与最小值,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(理)已知数列满足(),首项.
(1)求数列的通项公式;
(2)求数列的前项和;
(3)数列满足,记数列的前项和为,是△ABC的内角,若对于任意恒成立,求角的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产的某批产品的销售量万件(生产量与销售量相等)与促销费用万元满足(其中,为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为元件.
(1)将该产品的利润万元表示为促销费用万元的函数;
(2)促销费用投入多少万元时,该公司的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电器专卖店销售某种型号的空调,记第天(,)的日销售量为(单位;台).函数图象中的点分别在两条直线上,如图,该两直线交点的横坐标为,已知时,函数.
(1)当时,求函数的解析式;
(2)求的值及该店前天此型号空调的销售总量;
(3)按照经验判断,当该店此型号空调的销售总量达到或超过台,且日销售量仍持续增加时,该型号空调开始旺销,问该店此型号空调销售到第几天时,才可被认为开始旺销?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等腰梯形中,,,E为CD中点,将沿AE折到的位置.
(1)证明:;
(2)当折叠过程中所得四棱锥体积取最大值时,求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com