精英家教网 > 高中数学 > 题目详情
12.求函数f(x)=$\sqrt{x+1}$的导函数.

分析 根据导数的公式进行计算.

解答 解:∵f(x)=$\sqrt{x+1}$,
∴f′(x)=$\frac{1}{2\sqrt{x+1}}$•(x+1)′=$\frac{1}{2\sqrt{x+1}}$.

点评 本题主要考查函数的导数的计算,根据复合函数的导数公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列各组函数表示相等函数的是(  )
A.$f(x)=\left\{{\begin{array}{l}{x,x>0}\\{-x,x<0}\end{array}}\right.$与 g(x)=|x|B.f(x)=2x-1与 $g(x)=\frac{{2{x^2}-x}}{x}$
C.f(x)=|x-1|与 $g(t)=\sqrt{{{(t-1)}^2}}$D.$f(x)=\frac{x-1}{x-1}$与g(t)=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}中${a_1}=2,{a_2}=1,{a_{n+2}}=\left\{\begin{array}{l}\frac{{2{a_{n+1}}}}{a_n},{a_{n+1}}≥2\\ \frac{4}{a_n},{a_{n+1}}<2\end{array}\right.(n∈{N^*}),{S_n}$是数列{an}的前n项和,则S2016=5241.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin2x+2$\sqrt{3}$sinxcosx-cos2x,求:
(1)它的最小正周期;
(2)它的最值;
(3)并指出在区间[0,π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四边形PABC中,PB⊥AC,AD=BD=1,AC=3,E是PC上一点,且PE:EC=1:2,现将△PAC沿AC进行翻折,得到如图②所示的三棱锥P-ABC.
(1)证明:DE∥平面PAB;
(2)证明:在翻折的过程中,总有平面PDB⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的点P到直线x-2y+7=0的距离最大时,点P的坐标是(  )
A.(-$\sqrt{3}$,$\frac{\sqrt{3}}{2}$)B.($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)C.(-1,$\frac{3}{2}$)D.(1,-$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.双曲线方程为x2-4y2=-36,则它的标准方程为$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{36}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=a-bcosx的最大值为$\frac{3}{2}$,最小值为$-\frac{1}{2}$,求实数y=-4bsinax的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点A(-2,y),B(4,9),且|$\overrightarrow{AB}$|=10,则y=1或17.

查看答案和解析>>

同步练习册答案