分析 利用诱导公式和同角三角函数的基本关系,即可求出代数式的值.
解答 解:∵sin(x+$\frac{π}{6}$)=a,
∴sin($\frac{5π}{6}$-x)+$si{n}^{2}(\frac{π}{3}-x)$
=sin[π-(x+$\frac{π}{6}$)]+sin2[$\frac{π}{2}$-(x+$\frac{π}{6}$)]
=sin(x+$\frac{π}{6}$)+cos2(x+$\frac{π}{6}$)
=sin(x+$\frac{π}{6}$)+[1-sin2(x+$\frac{π}{6}$)
=a+(1-a2)
=1+a-a2.
点评 本题考查了三角函数的化简与运算问题,也考查了诱导公式与同角三角函数关系的应用问题,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2,3) | B. | (2,3] | C. | (-3,-2) | D. | [-3,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com