精英家教网 > 高中数学 > 题目详情
如图,已知平面内一动点到两个定点的距离之和为,线段的长为.

(1)求动点的轨迹的方程;
(2)过点作直线与轨迹交于两点,且点在线段的上方,
线段的垂直平分线为.
①求的面积的最大值;
②轨迹上是否存在除外的两点关于直线对称,请说明理由.
(1)参考解析;(2)①;②参考解析

试题分析:(1)由于c的大小没确定,所以点A的轨迹,根据c的大小有三种情况.
(2)①由可得点A的轨迹方程为椭圆,求的面积的最大值即求出点A到直线距离的最大值.即点A在椭圆的上顶点上即可.本小题通过建立三角函数同样可以求得三角形面积最大时的情况.
②当时,显然存在除外的两点关于直线对称.当直线AC不垂直于时,不存在除外的两点关于直线对称.通过假设存在,利用点差法即可得到,.由于H,M分别是两条弦的中点,并且都被直线m平分.所以.由.所以不存在这样的直线.
试题解析:(1)因为,轨迹是以为焦点的椭圆,3分
(2)以线段的中点为坐标原点,以所在直线为轴建立平面直角坐标系,
可得轨迹的方程为7分
①解法1:设表示点到线段的距离
,8分
要使的面积有最大值,只要有最大值
当点与椭圆的上顶点重合时,
的最大值为10分
解法2:在椭圆中,设,记
在椭圆上,由椭圆的定义得:

中,由余弦定理得:
配方,得:
从而

8分
根据椭圆的对称性,当最大时,最大
当点与椭圆的上顶点重合时,
最大值为10分
②结论:当时,显然存在除外的两点关于直线对称11分
下证当不垂直时,不存在除外的两点关于直线对称12分
证法1:假设存在这样的两个不同的点

设线段的中点为直线
由于上,故
在椭圆上,所以有
两式相减,得
将该式写为
并将直线的斜率和线段的中点,表示代入该表达式中,
②14分
①、②得,由(1)代入


的中点为点,而这是不可能的.
此时不存在满足题设条件的点.16分
证法2:假设存在这样的两个不同的点
14分
,故直线经过原点.15分
直线的斜率为,则假设不成立,
故此时椭圆上不存在两点(除了点、点外)关于直线对称16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1的离心率为,左焦点为F(-1,0),
(1)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若,求直线L的方程;
(2)椭圆C上是否存在三点P,E,G,使得SOPE=SOPG=SOEG

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点,证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.点为圆上任一点,且满足,动点的轨迹记为曲线

(1)求圆的方程及曲线的方程;
(2)若两条直线分别交曲线于点,求四边形面积的最大值,并求此时的的值.
(3)证明:曲线为椭圆,并求椭圆的焦点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求·的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,离心率,是椭圆上的动点.
(1)求椭圆标准方程;
(2)若直线的斜率乘积,动点满足,(其中实数为常数).问是否存在两个定点,使得?若存在,求的坐标及的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为椭圆的左右焦点,点为其上一点,且有
.
(1)求椭圆的标准方程;
(2)过的直线与椭圆交于两点,过平行的直线与椭圆交于两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为F,过F作直线交抛物线于A、B两点,设(  )
A.4       B.8       C.       D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C=1(ab>0)的离心率为,其左、右焦点分别是F1F2,过点F1的直线l交椭圆CEG两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点AB,设P为椭圆上一点,且满足t (O为坐标原点),当||<时,求实数t的取值范围.

查看答案和解析>>

同步练习册答案