(本小题满分12分)
已知动圆P过点并且与圆相外切,动圆圆心P的轨迹为W,过点N的直线与轨迹W交于A、B两点。
(Ⅰ)求轨迹W的方程; (Ⅱ)若,求直线的方程;
(Ⅲ)对于的任意一确定的位置,在直线上是否存在一点Q,使得,并说明理由。
解:(Ⅰ)依题意可知 ∴,
∴点P的轨迹W是以M、N为焦点的双曲线的右支,设其方程为,则 ∴,∴轨迹W的方程为
(Ⅱ)当的斜率不存在时,显然不满足,故的斜率存在,设的方程为,由得,又设,
则 www.k@s@5@u.com 高#考#资#源#
由①②③解得,∵ ∴
∴ 代入①②得,
消去得,即,故所求直线的方程为:;
(3)问题等价于判断以AB为直径的圆是否与直线有公共点若直线的斜率不存在,
则以AB为直径的圆为,可知其与直线相交;
若直线的斜率存在,则设直线的方程为,
由(2)知且,又为双曲线的右焦点,
双曲线的离心率e=2,则
设以AB为直径的圆的圆心为S,点S到直径的距离为d,则
∴
∵ ∴即,即直线与圆S相交。
综上所述,以线段AB为直径的圆与直线相交;
故对于的任意一确定的位置,
与直线上存在一点Q(实际上存在两点)使得
解析
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com