精英家教网 > 高中数学 > 题目详情
已知关于x的方程x2+(a+1)x+a+2b+1=0的两个实根分别为x1,x2,且0<x1<1,x2>1,则
b
a
的取值范围是
 
考点:基本不等式
专题:不等式的解法及应用
分析:令f(x)=x2+(a+1)x+a+2b+1,由于关于x的方程x2+(a+1)x+a+2b+1=0的两个实根分别为x1,x2,且0<x1<1,x2>1,可得f(0)>0,f(1)<0,再利用线性规划的有关知识即可得出.
解答: 解:令f(x)=x2+(a+1)x+a+2b+1,
∵关于x的方程x2+(a+1)x+a+2b+1=0的两个实根分别为x1,x2,且0<x1<1,x2>1,
∴f(0)>0,f(1)<0,
∴a+2b+1>0,1+a+1+a+2b+1<0,
即a+2b+1>0,2a+2b+3<0,
b
a
=k
,即b=ka,
联立
a+2b+1=0
2a+2b+3=0
,解得P(-2,
1
2
)

-1<k<-
1
4

故答案为:(-1,-
1
4
)
点评:本题考查了二次函数的性质、线性规划的有关知识、一元二次方程有实数根的条件,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列五个命题:
①若一个圆锥的底面半径缩小到原来的
1
2
,其体积缩小到原来的
1
4

②若两组数据的中位数相等,则它们的平均数也相等;
③直线x+y+1=0与圆x2+y2=
1
2
相切;
④“10a≥10b”是“lga≥lgb”的充分不必要条件.
其中真命题的序号是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+acosx的图象经过点(
π
3
,0)
(1)求实数a的值;
(2)设g(x)=[f(x)]2-2,求当x∈(
π
4
3
)时,函数g(x)的值域;
(3)若g(
a
2
)=-
3
4
π
6
<a<
3
),求cos(α+
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sin(2x-
π
3
)+3的最小值为(  )
A、5B、1C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(2,-2).
(Ⅰ)求 
a
b
的值;
(Ⅱ)若 
a
b
与 
a
垂直,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<
π
2
)的图象经过点(0,
1
2
),且相邻两条对称轴间的距离为
π
2

(Ⅰ)求函数f(x)的解析式及其单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别是角A、B、C的对边,若f(
A
2
)-cosA=
1
2
,且bc=1,b+c=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面是关于公差d>0的等差数列{an}的两个命题:p1:数列{nan}是递增数列;p2:数列{
an
n
}是递增数列.
其中的真命题为(  )
A、p1∨p2
B、p1∧p2
C、¬p1∨p2
D、p1∧¬p2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
2
sin2x-
3
2
cos2x+1的单调递增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y均为正数,且
1
x
+
9
y
=1,求x+y的最小值及取得最小值时x,y的值.

查看答案和解析>>

同步练习册答案