精英家教网 > 高中数学 > 题目详情
14.已知命题p:函数$f(x)=\frac{2x+3}{x}$的图象关于(0,3)中心对称;命题q:已知函数g(x)=msinx+ncosx(m,n∈R)满足$g({\frac{π}{6}-x})=g({\frac{π}{6}+x})$,则$n=\sqrt{3}m$; 则下列命题是真命题的为(  )
A.(¬p)∧qB.p∧qC.p∨(¬q)D.(¬p)∧(¬q)

分析 先判断命题p和命题q的真假,进而根据复合命题真假判断的真值表,得到答案.

解答 解:函数$f(x)=\frac{2x+3}{x}$=$\frac{3}{x}$+2的图象由函数y=$\frac{3}{x}$的图象向上平移两个单位得到,
故关于(0,2)中心对称;
故命题p:函数$f(x)=\frac{2x+3}{x}$的图象关于(0,3)中心对称为假命题;
若函数g(x)=msinx+ncosx(m,n∈R)满足$g({\frac{π}{6}-x})=g({\frac{π}{6}+x})$,
则函数图象关于直线x=$\frac{π}{6}$对称,
则g($\frac{π}{6}$)=msin$\frac{π}{6}$+ncos$\frac{π}{6}$=±$\sqrt{{m}^{2}+{n}^{2}}$,
解得:$n=\sqrt{3}m$,
故命题q为真命题,
故命题(¬p)∧q为真命题,
命题p∧q,p∨(¬q),(¬p)∧(¬q)为假命题;
故选:A

点评 本题以命题的真假判断与应用为载体,考查了复合命题,函数的对称性,三角函数的化简求值等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知圆心在x轴上、半径为$\sqrt{3}$的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的标准方程是(x+$\sqrt{6}$)2+y2=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正三棱柱ABC-A′B′C′如图所示,其中G是BC的中点,D,E分别在线段AG,A′C上运动,使得DE∥平面BCC′B′,CC′=2BC=4.
(1)求二面角A′-B′C-C′的余弦值;
(2)求线段DE的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形OABC的面积为24$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,圆C1的极坐标方程是ρ2+2ρcosθ=0,圆C2的参数方程是$\left\{\begin{array}{l}{x=cosα}\\{y=-1+sinα}\end{array}\right.$(α是参数).
(Ⅰ)求C1和C2的交点的极坐标;
(Ⅱ)直线l经过C1和C2的交点,且垂直于公共弦,求直线l的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆的焦点是F1(-1,0)和F2(1,0),离心率$e=\frac{1}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点P是椭圆上一点,且∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设实数x,y满足x2=4y,则$\sqrt{{{({x-3})}^2}+{{({y-1})}^2}}+y$的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一奶制品加工厂以牛奶为原料分别在甲、乙两类设备上加工生产A、B两种奶制品,如用甲类设备加工一桶牛奶,需耗电12千瓦时,可得3千克A制品;如用乙类设备加工一桶牛奶,需耗电8千瓦时,可得4千克B制品.根据市场需求,生产的A、B两种奶制品能全部售出,每千克A获利a元,每千克B获利b元.现在加工厂每天最多能得到50桶牛奶,每天两类设备工作耗电的总和不得超过480千瓦时,并且甲类设备每天至多能加工102千克A制品,乙类设备的加工能力没有限制.其生产方案是:每天用x桶牛奶生产A制品,用y桶牛奶生产B制品(为了使问题研究简化,x,y可以不为整数).
(Ⅰ)若a=24,b=16,试为工厂制定一个最佳生产方案(记此最佳生产方案为F0),即x,y分别为何值时,使工厂每天的获利最大,并求出该最大值;
(Ⅱ) 随着季节的变换和市场的变化,以及对原配方的改进,市场价格也发生变化,获利也随市场波动.若a=24(1+4λ),b=16(1+5λ-5λ2)(这里0<λ<1),其它条件不变,试求λ的取值范围,使工厂当且仅当采取(Ⅰ)中的生产方案F0时当天获利才能最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各命题是真命题的是(  )
A.如果a>b,那么$\frac{a}{c}$>$\frac{b}{c}$B.如果ac<bc,那么a<b
C.如果a>b,c>d,那么a-c>b-dD.如果a>b,那么a-c>b-c

查看答案和解析>>

同步练习册答案