精英家教网 > 高中数学 > 题目详情

【题目】如图①,△ABC是以AC为斜边的等腰直角三角形,△BCD是等边三角形.如图②,将△BCD沿BC折起,使平面BCD⊥平面ABC,记BC的中点为EBD的中点为M,点FN在棱AC上,且AF3CFC.

1)试过直线MN作一平面,使它与平面DEF平行,并加以证明;

2)记(1)中所作的平面为α,求平面α与平面BMN所成锐二面角的余弦值.

【答案】1)见解析;(2

【解析】

1)过,交,连结,推导出的中点,从而,由此能证明平面平面

2)以为原点,轴,轴,过点作平面的垂线为轴,建立空间直角坐标系,利用向量法能求出平面与平面所成锐二面角的余弦值.

(1)过NNGEF,交BCG,连结MG,则平面MNG∥平面DEF.

理由如下:

EFNGBC的中点为EBD的中点为M,点FN在棱AC上,且AF3CF

C.

GBE的中点,

MGDE,又DEEFEMGNGG

∴平面MNG∥平面DEF.

(2)以B为原点,BCx轴,BAy轴,过点B作平面ABC的垂线为z轴,建立空间直角坐标系,如下图所示:

BC2,则B(000),D(10),M(),

A(020),G(00),N(0),

(000

设平面BMN的法向量(xyz),

,取,得,﹣1

设平面GMN的法向量(xyz),

,取x1,得(1,﹣10),

设平面α与平面BMN所成锐二面角的平面角为θ

cosθ.

∴平面α与平面BMN所成锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)求证:当时,上存在最小值;

2)若的零点且当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究每周累计户外暴露时间是否足够(单位:小时)与近视发病率的关系,对某中学一年级名学生进行不记名问卷调查,得到如下数据:

1)用样本估计总体思想估计该中学一年级学生的近视率;

2)能否认为在犯错误的概率不超过的前提下认为不足够的户外暴露时间与近视有关系?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面是梯形.BCADABBCCD1AD2

(Ⅰ)证明;ACBP

(Ⅱ)求直线AD与平面APC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000名患者的相关信息,得到如下表格:

潜伏期(单位:天)

人数

1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);

2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表. 请将列联表补充完整,并根据列联表判断是否有的把握认为潜伏期与患者年龄有关;

潜伏期

潜伏期

总计

50岁以上(含50岁)

50岁以下

55

总计

200

3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立. 为了深入研究,该研究团队随机调查了名患者,其中潜伏期超过6天的人数最有可能即概率最大)是多少?

附:

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)=|2x1||2x+1|.

1)求不等式fx)>1的解集.

2)当时,求证:4x2+4x+2>(2x+1fx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉,字谦光,南宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如图所示的三角形数表,称之为开方作法本源图,并说明此表引自11世纪中叶(约公元1050年)贾宪的《释锁算术》,并绘画了古法七乘方图”.故此,杨辉三角又被称为贾宪三角”.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

基于上述规律,可以推测,当时,从左往右第22个数为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数,直线与曲线分别交于两点.

(1)若点的极坐标为,求的值;

(2)求曲线的内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,为梯形外一点,且平面.

1)求证:平面

2)当二面角的平面角的余弦值为时,求这个四棱锥的体积.

查看答案和解析>>

同步练习册答案