【题目】已知抛物线,斜率为的直线交抛物线于,两点,当直线过点时,以为直径的圆与直线相切.
(1)求抛物线的方程;
(2)与平行的直线交抛物线于,两点,若平行线,之间的距离为,且的面积是面积的倍,求和的方程.
科目:高中数学 来源: 题型:
【题目】已知函数(常数)满足.
(1)求的值,并对常数的不同取值讨论函数奇偶性;
(2)若在区间上单调递减,求的最小值.
(3)若方程在有解,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明你的结论;
(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天干地支纪年法,源于中国,中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推.排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推.已知2018年为戊戌年,那么到改革开放一百年,即2078年为__________年.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A,B是R中两个子集,对于x∈R,定义:,
①若AB.则对任意x∈R,m(1-n)=______;
②若对任意x∈R,m+n=1,则A,B的关系为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标和,制成下图,其中“”表示甲村贫困户,“”表示乙村贫困户.若,则认定该户为“绝对贫困户”,若,则认定该户为“相对贫困户”,若,则认定该户为“低收入户”;若,则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.
(1)从乙村的50户中随机选出一户,求该户为“绝对贫困户”的概率;
(2)从甲村所有“今年不能脱贫的非绝对贫困户”中任选2户,求选出的2户均为“低收入户”的概率;
(3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为推动更多人阅读,联合国教科文组织确定每年的月日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了名居民,经统计这人中通过电子阅读与纸质阅读的人数之比为,将这人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示.
(1)求的值及通过电子阅读的居民的平均年龄;
(2)把年龄在第组的居民称为青少年组,年龄在第组的居民称为中老年组,若选出的人中通过纸质阅读的中老年有人,请完成上面列联表,则是否有的把握认为阅读方式与年龄有关?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:,点P(0,1).
(1)过P点作斜率为k(k>0)的直线交椭圆C于A点,求弦长|PA|(用k表示);
(2)过点P作两条互相垂直的直线PA,PB,分别与椭圆交于A、B两点,试问:直线AB是否经过一定点?若存在,则求出定点,若不存在,则说明理由?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com