精英家教网 > 高中数学 > 题目详情
5.已知椭圆经过点($\frac{\sqrt{6}}{3}$,$\sqrt{3}$)和点($\frac{2\sqrt{2}}{3}$,1),求椭圆的标准方程.

分析 由题意设椭圆的标准方程为mx2+ny2=1,(其中m、n为正数且m≠n),代点可得m和n的方程组,解方程组可得.

解答 解:由题意设椭圆的标准方程为mx2+ny2=1,(其中m、n为正数且m≠n),
∵椭圆经过点($\frac{\sqrt{6}}{3}$,$\sqrt{3}$)和点($\frac{2\sqrt{2}}{3}$,1),
∴$\left\{\begin{array}{l}{\frac{2}{3}m+3n=1}\\{\frac{8}{9}m+n=1}\end{array}\right.$,解方程组可得$\left\{\begin{array}{l}{m=1}\\{n=\frac{1}{9}}\end{array}\right.$,
∴所求椭圆的标准方程为x2+$\frac{{y}^{2}}{9}$=1

点评 本题考查椭圆的标准方程的求解,设方程为mx2+ny2=1可避免分类讨论,是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.函数f(x)=Asin(ωx+φ)(ω>0,|φ|<π,x∈R)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f($\frac{8}{π}$x0)=-1,x0∈($\frac{π}{4},\frac{3π}{4}$),求sinx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.己知幂函数y=x${\;}^{{m}^{2}-2m-3}$(m∈N*)为偶函数,且在(0,+∞)是减函数,求m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.己知a,b,c为正实数,且a+b+c=2.
(1)求证:ab+bc+ac≤$\frac{4}{3}$;
(2)若a,b,c都小于1,求a2+b2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.以坐标轴为对称轴,长、短半轴长之和为10,焦距为4$\sqrt{5}$的椭圆方程为$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{16}=1$,或$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{36}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知椭圆经过点($\frac{\sqrt{6}}{3}$,$\sqrt{3}$)和点($\frac{2\sqrt{2}}{3}$,1),求椭圆的标准方程.
(2)焦点坐标为(±$\sqrt{3}$,0),并且经过点(2,1),求椭圆的标准方程.
(3)求经过点(2,-3)且与椭圆9x2+4y2=36有共同焦点的椭圆的标准方程.
(4)若椭圆的两个焦点为F1(-4,0)、F2(4,0),椭圆的弦AB过点F1,且△ABF2的周长为20,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A、B是抛物线y2=2px(p>0)上的两点,且OA⊥OB,求两点的横坐标之积和纵坐标之积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{2x-y-2≤0}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面区域的面积为a,则($\sqrt{x}$-$\frac{2a}{7x}$)2015的展开式中系数最小的项是第1007项.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线l1:$\left\{\begin{array}{l}x=1-2t\\ y=2+kt.\end{array}$(t为参数)与直线l2:$\left\{\begin{array}{l}{x=s}\\{y=1-2s}\end{array}\right.$(s为参数)垂直,则k的值是(  )
A.1B.-1C.2D.-2

查看答案和解析>>

同步练习册答案