精英家教网 > 高中数学 > 题目详情
9.在正四棱柱ABCD-A1B1C1D1中,顶点B1到对角线BD1的距离和到平面A1BCD1的距离分别为h和d,则$\frac{h}{d}$的取值范围为($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$).

分析 设底面边长为1,侧棱长为λ,过B1作B1H⊥BD1,B1G⊥A1B,Rt△BB1D1中可知B1D1和B1D,进而利用三角形面积公式求得h,设在正四棱柱中,由于BC⊥AB,BC⊥BB1,进而可推断BC⊥平面AA1B1B,BC⊥B1G,B1G⊥平面AB1CD1,可知B1G为点到平面A1BCD1的距离,Rt△A1B1B中,又由三角形面积关系得d,进而可知$\frac{h}{d}$的表达式,根据λ来确定其范围.

解答 解:设底面边长为1,侧棱长为λ(λ>0),
过B1作B1H⊥BD1,B1G⊥A1B.
在Rt△BB1D1中,B1D1=$\sqrt{2}$,B1D=$\sqrt{{λ}^{2}+2}$,
由三角形面积关系得:h=B1H=$\frac{\sqrt{2}λ}{\sqrt{{λ}^{2}+2}}$
设在正四棱柱中,由于BC⊥AB,BC⊥BB1
所以BC⊥平面AA1B1B,于是BC⊥B1G,
所以B1G⊥平面AB1CD1
故B1G为点到平面A1BCD1的距离,
在Rt△A1B1B中,又由三角形面积关系得d=B1G=$\frac{λ}{\sqrt{{λ}^{2}+1}}$
于是$\frac{h}{d}$=$\sqrt{2}•$$\sqrt{1-\frac{1}{{λ}^{2}+2}}$,
于是当λ>1,所以λ2+2>3,$\frac{2}{3}$<1-$\frac{1}{{λ}^{2}+2}$<1,
所以$\frac{h}{d}$∈($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$).
故答案为:($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$).

点评 本题主要考查了点到面的距离计算.点到平面的距离是近两年高考的一个热点问题,平时应注意强化训练.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知数列{an},{bn}满足a1=$\frac{1}{2}$,an+bn=1,bn+1=$\frac{{b}_{n}}{1-{a}_{n}^{2}}$(n∈N*),则b2015=$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在正项等比数列{an}中,公比q∈(0,1),且a1a5+2a3a5+a2a8=25,2是a3与a5的等比中项,记bn=5-log2an
(1)求数列{bn}的通项公式;
(2)求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,已知平面α∥平面β,AB与CD是两条异面直线且AB?α,CD?β,如果E、F、G分别是AC、CB、BD的中点.求证:平面EFG∥α∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线l1:3x+y-2=0与直线l2:mx-y+1=0的夹角为45°,则实数m=2或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=2sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$)+sin2x的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点P在椭圆上,△POF2是面积为$\sqrt{3}$的正三角形,则椭圆方程为$\frac{{x}^{2}}{4+2\sqrt{3}}$+$\frac{{y}^{2}}{2\sqrt{3}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点P1(x0,y0)为双曲线$\frac{{x}^{2}}{8{b}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b为正常数)上任一点,F2为双曲线的右焦点,过P作直线x=$\frac{8b}{3}$的垂线,垂足为A,连接F2A并延长交y轴于P2
(1)求线段P1P2的中点P的轨迹E的方程;
(2)设轨迹E与x轴交于B、D两点,在E上任取一点Q(x1,y1)(y1≠0),直线QB,QD分别交y轴于M,N两点.求证:以MN为直径的圆过两定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=2sin2x+2$\sqrt{3}$sinxcosx-1的图象关于(φ,0)对称,则φ的值可以是(  )
A.$-\frac{π}{6}$B.$\frac{π}{6}$C.$-\frac{π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

同步练习册答案