精英家教网 > 高中数学 > 题目详情
已知直线l的参数方程为
x=
1
2
t
y=1+
3
2
t
(t为参数),曲线C的极坐标方程为ρ=2
2
sin(θ+
π
4
),直线l与曲线C交于A,B两点,与y轴交于点P.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)求
1
|PA|
+
1
|PB|
的值.
考点:直线的参数方程,简单曲线的极坐标方程
专题:坐标系和参数方程
分析:(1)消去参数t,把直线l的参数方程化为普通方程,利用极坐标公式,把曲线C的极坐标方程化为普通方程;
(2)把直线l的参数方程代入曲线C的普通方程中,得到t2-t-1=0,由根与系数的关系,求出
1
|PA|
+
1
|PB|
=
|t1-t2|
|t1t2|
的值.
解答: 解:(1)消去参数t,把直线l的参数方程
x=
1
2
t
y=1+
3
2
t
(t为参数)化为普通方程是
3
x-y+1=0,
利用极坐标公式,把曲线C的极坐标方程ρ=2
2
sin(θ+
π
4
)化为
ρ2=2ρsinθ+2ρcosθ,
∴普通方程是x2+y2=2y+2x,
即(x-1)2+(y-1)2=2;
(2)∵直线l与曲线C交于A,B两点,与y轴交于点P,
把直线l的参数方程
x=
1
2
t
y=1+
3
2
t
代入曲线C的普通方程(x-1)2+(y-1)2=2中,
得t2-t-1=0,
t1•t2=-1
t1+t2=1

1
|PA|
+
1
|PB|
=
1
|t1|
+
1
|t2|
=
|t1-t2|
|t1t2|
=
(t1+t2)2-4t1t2
=
12-4×(-1)
=
5
点评:本题考查了参数方程与极坐标的应用问题,解题时应熟悉参数方程、极坐标方程与普通方程的互化问题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则(  )
A、sinA=5,sinB=11,sinC=13
B、a=5,b=11,c=13
C、A:B:C=5:11:13
D、a:b:c=5:11:13

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足
x2-x-6≤0
x2+2x-8>0.

(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若?p是?q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足x2+y2=4(y≥0),则m=
3
x+y的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c为正实数且满足a+2b+3c=6,
(Ⅰ)求abc的最大值;
(Ⅱ)求
a+1
+
2b+1
+
3c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(1,1,1),N(0,a,0),O(0,0,0),若△OMN为直角三角形,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设i是虚数单位,已知复数z1=2cosα-2isinα,z2=3cosβ+3isinβ,|z1-z2|=
5

(Ⅰ)求cos(α+β)的值;
(Ⅱ)若0<α,β<
π
2
,且sinβ=
5
5
,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中,点M到点F(2,0)的距离比它到y轴的距离多2,记点M的轨迹为C.
(1)求轨迹为C的方程;
(2)设斜率为k的直线l过定点P(-4,2),求直线l与轨迹C恰好有一个公共点,两个公共点,三个公共点时k的相应取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合S={x||x|<5},T={x|x2+4x-21<0},则S∩T=(  )
A、{x|-7<x<-5}
B、{x|3<x<5}
C、{x|-5<x<3}
D、{x|-7<x<5}

查看答案和解析>>

同步练习册答案