精英家教网 > 高中数学 > 题目详情
已知坐标平面上点与两个定点的距离之比等于5.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线所截得的线段的长为8,求直线的方程
(1)点M的轨迹方程是(x-1)2+(y-1)2=25,轨迹是以(1,1)为圆心,以5为半径的圆
(2)直线l的方程为x=-2,或5x-12y+46=0.

试题分析:解:(1)由题意,得=5.,化简,得x2+y2-2x-2y-23=0.即(x-1)2+(y-1)2=25.∴点M的轨迹方程是(x-1)2+(y-1)2=25,轨迹是以(1,1)为圆心,以5为半径的圆.
(2)当直线l的斜率不存在时,l:x=-2,此时所截得的线段的长为,∴l:x=-2符合题意.当直线l的斜率存在时,设l的方程为y-3=k(x+2),即kx-y+2k+3=0,圆心到l的距离,由题意,得,解得.∴直线l的方程为.即5x-12y+46=0.综上,直线l的方程为x=-2,或5x-12y+46=0.
点评:解决的关键是根据直接法来得到点满足的几何关系,然后坐标化得到求解,并能结合直线与圆的位置关系来得到,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆有相同的焦点,点分别是椭圆的右、右顶点,若椭圆经过点
(1)求椭圆的方程;
(2)已知是椭圆的右焦点,以为直径的圆记为,过点引圆的切线,求此切线的方程;
(3)设为直线上的点,是圆上的任意一点,是否存在定点,使得?若存在,求出定点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线(a>0,b>0)的离心率是,则的最小值为  (    )
A.B.1C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为

轴被抛物线截得的线段长等于的长半轴长.
(1)求的方程;
(2)设轴的交点为,过坐标原点的直线
相交于两点,直线分别与相交于.   
①证明:为定值;
②记的面积为,试把表示成的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足·=0,且||=10,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆:和圆,过椭圆上一点引圆的两
条切线,切点分别为. 若椭圆上存在点,使得,则椭圆离心率的取值范围
是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与双曲线有相同的焦点,若cam的等比中项,n2是2m2c2的等差中项,则椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,轴截面为边长为等边三角形的圆锥,过底面圆周上任一点作一平面,且与底面所成二面角为,已知与圆锥侧面交线的曲线为椭圆,则此椭圆的离心率为(  )
A.  B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程mx2-my2=n中,若mn<0,则方程的曲线是(    )
A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线
C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线

查看答案和解析>>

同步练习册答案