精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的方程是,将向上平移2个单位得到曲线. 

(1)求曲线的极坐标方程;

(2)直线的参数方程为为参数),判断直线与曲线的位置关系.

【答案】1)曲线的极坐标方程为2相交

【解析】试题分析:(1)曲线的方程是,即,将代入得的方程,将向上平移2个单位得到曲线 ,化为极坐标方程即可(2)直线的参数方程为为参数),化为普通方程是,比较的大小即得解.

试题解析:

(1)曲线的方程是,即

代入得,即. 

的方程化为标准方程是

向上平移2个单位得到曲线 ,展开为,则曲线的极坐标方程为

(2)由,得

故直线的普通方程是

因为圆 的半径为

圆心 到直线

所以直线与曲线相交.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的方程是,将向上平移2个单位得到曲线. 

(1)求曲线的极坐标方程;

(2)直线的参数方程为为参数),判断直线与曲线的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an﹣3

1)求数列{an}的通项公式;

2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个推理中,属于演绎推理的是(  )

A. 观察下列各式:72=49,73=343,74=2401,…,则72015的末两位数字为43

B. 观察,可得偶函数的导函数为奇函数

C. 在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,类似的,在空间中,若两个正四面体的棱长比为1:2,则它们的体积之比为1:8

D. 已知碱金属都能与水发生还原反应,钠为碱金属,所以钠能与水发生反应

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如图所示(单位:m),则该几何体的表面积为(单位:m2)(  )

A. (11+4 B. (12+4 C. (13+4 D. (14+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点P到定点F(0,1)的距离比它到直线的距离小1,设动点P的轨迹为曲线C,过点F的直线交曲线C于AB两个不同的点,过点AB分别作曲线C的切线,且二者相交于点M

(Ⅰ)求曲线C的方程;

()求证:

(Ⅲ)△ABM的面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,某城市的市民收入逐年增长,表1是该城市某银行连续五年的储蓄存款额(年底余额):

表1

年份x

2011

2012

2013

2014

2015

储蓄存款额y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将表1的数据进行了处理,令tx-2 010,zy-5,得到表2:

表2

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(1)z关于t的线性回归方程是________y关于x的线性回归方程是________

(2)用所求回归方程预测到2020年年底,该银行储蓄存款额可达________千亿元.

(附:线性回归方程x,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题分)

如图, 所在的平面互相垂直,且

)求证:

)求直线与面所成角的大小的正弦值.

)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点, 是椭圆上的点,且,设动点满足

)求动点的轨迹的方程

若直线与曲线交于两点求三角形面积的最大值

查看答案和解析>>

同步练习册答案