精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,离心率,点在椭圆上.

1)求椭圆的标准方程;

2)设点是椭圆上一点,左顶点为,上顶点为,直线轴交于点,直线轴交于点,求证: 为定值.

【答案】(1);(2)证明见解析.

【解析】试题分析:(1)根据椭圆离心率,点在椭圆上,结合性质 , ,列出关于的方程组,求出,即可得椭圆的标准方程;(2)设 ,则,由三点共线,可得 ,则,结合,消去可得为定值.

试题解析:1)依题意得,设,则

由点在椭圆上,有,解得,则

椭圆C的方程为: .

(2) ,则,由APM三点共线,则有,即,解得,则

BPN三点共线,有,即,解得

=

又点P在椭圆上,满足,有

代入上式得

=

可知为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的两条相邻对称轴之间的距离为

1)求的值;

2)将函数的图象向左平移个单位,再将所得函数的图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,若函数在区间上存在零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为,点分别棱楼的中点,下列结论中正确的是(

A.四面体的体积等于B.平面

C.平面D.异面直线所成角的正切值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,动圆C经过点,且被y轴截得的弦长为2p,记动圆圆心C的轨迹为E

求轨迹E的方程;

求证:在轨迹E上存在点AB,使得为坐标原点是以A为直角顶点的等腰直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四个正方体中,是正方体的一条体对角线,点分别为其所在棱的中点,能得出平面的图形为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极小值.

(1)求实数的值;

(2)设,其导函数为,若的图象交轴于两点,设线段的中点为,试问是否为的根?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网络直播是一种新兴的网络社交方式,网络直播平台也成为了一种崭新的社交媒体.很多人选择在快手、抖音等网络直播平台上分享自己的生活点滴.2020年的寒假,注定不凡.因为新冠病毒疫情的影响,开学延迟了,老师们停课不停教,在网络上直播授课;同学们停课不停学,在家上网课.某网络社交平台为了了解网络直播在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你直播过吗?”其中,回答“直播过”的共有个人.把这个人按照年龄分成5组:第1,第2,第3,第4,第5,然后绘制成如图所示的频率分布直方图.其中,第一组的频数为20.

1)求的值,并根据频率分布直方图估计这组数据的众数;

2)从第134组中用分层抽样的方法抽取6人,求第134组抽取的人数;

3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若不等式上恒成立,求a的取值范围;

2)若函数恰好有三个零点,求b的值及该函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学参加社会实践活动,随机调查了某小区5个家庭的年可支配收入x(单位:万元)与年家庭消费y(单位:万元)的数据,制作了对照表:

x/万元

2.7

2.8

3.1

3.5

3.9

y/万元

1.4

1.5

1.6

1.8

2.2

由表中数据得回归直线方程为,得到下列结论,其中正确的是(

A.若某户年可支配收入为4万元时,则年家庭消费约为2.3万元

B.若某户年可支配收入为4万元时,则年家庭消费约为2.1万元

C.若年可支配收入每增加1万元,则年家庭消费相应平均增加0.5万元

D.若年可支配收入每增加1万元,则年家庭消费相应平均增加0.1万元

查看答案和解析>>

同步练习册答案