精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\frac{2x+a}{x+1}$在区间(0,1)单调增,求a的取值范围.

分析 根据复合函数的单调性,把函数f(x)分离成基本初等函数,即可求出a的取值范围.

解答 解:∵函数f(x)=$\frac{2x+a}{x+1}$=2+$\frac{a-2}{x+1}$,
且f(x)在区间(0,1)单调增,
∴g(x)=$\frac{a-2}{x+1}$在区间(0,1)单调增,
∴a-2<0,
∴a<2.

点评 本题考查了复合函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设△ABC的∠A,∠B,∠C的对边分别为a,b,c,△ABC的面积S=$\frac{1}{4}$(3b2+7c2-2a2),则cos∠A=[-$\frac{1+\sqrt{5}}{2}$,$\frac{1-\sqrt{5}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点A(cos77°,sin77°),B(cos17°,sin17°),则直线AB的斜率为(  )
A.tan47°B.tan43°C.-tan47°D.-tan43°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.各项均为正数的等比数列{an}中,若a2=1,a4=$\frac{1}{4}$,则其前n项和Sn=4$(1-\frac{1}{{2}^{n}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且Sn≤S4.则通项公式an=13-3n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)在R上存在导数f′(x),在(0,+∞)上f′(x)<sin2x,且?x∈R,有f(-x)+f(x)=2sin2x,则以下大小关系一定不正确的是(  )
A.$f({-\frac{π}{6}})<f({-\frac{2π}{3}})$B.$f({\frac{π}{4}})<f(π)$C.$f({\frac{π}{6}})<f({\frac{2π}{3}})$D.$f({-\frac{π}{4}})<f({-π})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知函数$f(x)=\left\{\begin{array}{l}\frac{3}{2}\;x+3\;\;(-2≤x<0)\\-\frac{1}{2}x+3\;\;\;\;(0≤x<2)\\ 2\;\;\;\;(2≤x<4)\end{array}\right.$
①画出函数的图象;
②利用函数的图象写出函数的值域
(2)已知函数$y=\sqrt{ax+1}(a<0,且$且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=3sin(2x-$\frac{π}{3}$)的图象为C,给出下列结论:
①图象C关于直线x=$\frac{11}{12}$π对称;
②图象C关于点(${\frac{2}{3}$π,0)对称;
③函数f(x)在区间(-$\frac{π}{12}$,$\frac{π}{3}}$)内是增函数;
其中正确的结论有(  )个.
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,若3cos(A-B)+5cosC=0,则tanC的最大值为(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.-$\frac{\sqrt{2}}{4}$D.-2$\sqrt{2}$

查看答案和解析>>

同步练习册答案