精英家教网 > 高中数学 > 题目详情

【题目】已知直线过坐标原点的方程为

(1)当直线的斜率为与圆相交所得的弦长

(2)设直线与圆交于两点的中点求直线的方程

【答案】(1) ;(2) 直线l的方程为y=x或y=﹣x.

【解析】试题分析:(1) 由已知,直线的方程为圆心为半径为,求出圆心到直线的距离,根据勾股定理可求与圆相交所得的弦长;(2)设直线与圆交于两点,且的中点 点的坐标代入椭圆方程求出的坐标,即可求直线的方程.

试题解析:(1)由已知,直线l的方程为y=x,圆C圆心为(0,3),半径为

所以,圆心到直线l的距离为=.…

所以,所求弦长为2=2

(2) 设A(x1,y1),因为A为OB的中点,则B(2x1,2y1).

又A,B在圆C上,

所以 x12+y12﹣6y1+4=0,4x12+4y12﹣12y1+4=0.

解得y1=1,x1=±1,

即A(1,1)或A(﹣1,1)

所以,直线l的方程为y=x或y=﹣x.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t(单位:分钟)满足,市场调研测试,电车载客量与发车时间间隔t相关,当时电车为满载状态,载客为400人,当时,载客量会少,少的人数与的平方成正比,且发车时间间隔为2分钟时的载客为272人,记电车载客为

1)求的表达式;

2)若该线路分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆期间,某旅行社组团去风景区旅游,若旅行团人数不超过20人,每人需交费用800元;若旅行团人数超过20人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数60人为止.旅行社需支付各种费用共计10000.

(1)写出每人需交费用S关于旅行团人数的函数;

(2)旅行团人数x为多少时,旅行社可获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图如图.

(1)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;

(2)为分析学生平时的体育活动情况,现从体育成绩在的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意实数,给出下列命题,其中真命题是(

A.”是“”的充要条件B.”是“”的充分条件

C.”是“”的必要条件D.是无理数”是“是无理数”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是抛物线为上的一点,以S为圆心,r为半径做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点.

求抛物线的方程.

求证:直线CD的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的侧棱和底面边长相等,在这个正四棱锥的条棱中任取两条,按下列方式定义随机变量的值:

若这两条棱所在的直线相交,则的值是这两条棱所在直线的夹角大小(弧度制);

若这两条棱所在的直线平行,则

若这两条棱所在的直线异面,则的值是这两条棱所在直线所成角的大小(弧度制).

(1)求的值;

(2)求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的定义域;

(2)若函数的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为偶函数.

1)求实数的值,并写出在区间上的增减性和值域(不需要证明);

2)令,其中,若对任意,总有,求的取值范围;

3)令,若对任意,总有,求实数的取值范围.

查看答案和解析>>

同步练习册答案