【题目】已知直线过坐标原点,圆的方程为.
(1)当直线的斜率为时,求与圆相交所得的弦长;
(2)设直线与圆交于两点,且为的中点,求直线的方程.
【答案】(1) ;(2) 直线l的方程为y=x或y=﹣x.
【解析】试题分析:(1) 由已知,直线的方程为,圆圆心为,半径为,求出圆心到直线的距离,根据勾股定理可求与圆相交所得的弦长;(2)设直线与圆交于两点,且为的中点,设 ,则 ,将点的坐标代入椭圆方程求出的坐标,即可求直线的方程.
试题解析:(1)由已知,直线l的方程为y=x,圆C圆心为(0,3),半径为,
所以,圆心到直线l的距离为=.…
所以,所求弦长为2=2.
(2) 设A(x1,y1),因为A为OB的中点,则B(2x1,2y1).
又A,B在圆C上,
所以 x12+y12﹣6y1+4=0,4x12+4y12﹣12y1+4=0.
解得y1=1,x1=±1,
即A(1,1)或A(﹣1,1)
所以,直线l的方程为y=x或y=﹣x.
科目:高中数学 来源: 题型:
【题目】松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t(单位:分钟)满足,市场调研测试,电车载客量与发车时间间隔t相关,当时电车为满载状态,载客为400人,当时,载客量会少,少的人数与的平方成正比,且发车时间间隔为2分钟时的载客为272人,记电车载客为.
(1)求的表达式;
(2)若该线路分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国庆期间,某旅行社组团去风景区旅游,若旅行团人数不超过20人,每人需交费用800元;若旅行团人数超过20人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数60人为止.旅行社需支付各种费用共计10000元.
(1)写出每人需交费用S关于旅行团人数的函数;
(2)旅行团人数x为多少时,旅行社可获得最大利润?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图如图.
(1)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;
(2)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对任意实数,,,给出下列命题,其中真命题是( )
A.“”是“”的充要条件B.“”是“”的充分条件
C.“”是“”的必要条件D.“是无理数”是“是无理数”的充要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是抛物线为上的一点,以S为圆心,r为半径做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点.
求抛物线的方程.
求证:直线CD的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱锥的侧棱和底面边长相等,在这个正四棱锥的条棱中任取两条,按下列方式定义随机变量的值:
若这两条棱所在的直线相交,则的值是这两条棱所在直线的夹角大小(弧度制);
若这两条棱所在的直线平行,则;
若这两条棱所在的直线异面,则的值是这两条棱所在直线所成角的大小(弧度制).
(1)求的值;
(2)求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为偶函数.
(1)求实数的值,并写出在区间上的增减性和值域(不需要证明);
(2)令,其中,若对任意、,总有,求的取值范围;
(3)令,若对任意、,总有,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com