分析 (1)运用余弦定理,即可求得a=7;(2)运用余弦定理,计算可得A;
(3)运用正弦定理,可得B有两解;(4)由正弦定理,求得sinC,注意C有两解,再由三角形内角和定理,可得B.
解答 解:(1)由余弦定理可得,a2=b2+c2-2bccosA=64+9-2•8•3•$\frac{1}{2}$=49,解得a=7;
(2)由余弦定理可得,cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{2+4+2\sqrt{3}-4}{2×\sqrt{2}×(\sqrt{3}+1)}$=$\frac{\sqrt{2}}{2}$,
由0<A<π,可得A=$\frac{π}{4}$;
(3)由正弦定理可得,sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{6}×\frac{\sqrt{2}}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
由于b>a,即B>A,即有B为锐角或钝角,解得B=60°或120°;
(4)由正弦定理可得,sinC=$\frac{csinA}{a}$=$\frac{10×\frac{1}{2}}{5\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
由于c>a,即C>A,即有C为锐角或钝角,解得C=45°或135°,
即有∠B=180°-30°-45°=105°,或∠B=180°-135°-30°=15°.
点评 本题考查正弦定理和余弦定理的运用,考查三角形的内角和定理,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,1) | B. | (-1,1) | C. | (1,-1) | D. | (-1,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com