精英家教网 > 高中数学 > 题目详情

【题目】某企业生产一种机器的固定成本(即固定投入)为 0.5 万元,但每生产100台时,又需可变成本(即另增加投入)0.25 万元.市场对此商品的年需求量为 500台,销售的收入(单位:万元)函数为 R(x)=5x-x2(0≤x≤5),其中 x 是产品生产的数量(单位:百台).

(1)求利润关于产量的函数.

(2)年产量是多少时,企业所得的利润最大?

【答案】(1);(2)475

【解析】

(1)由于商品年需求量为,故要对产量分成不大于和大于两段来求利润.时,用收入减掉成本,即为利润的值.时,成本和的表达式一样,但是销售收入是固定的,由此求得解析式.(2)两段函数,二次函数部分用对称轴求得其最大值,一次函数部分由于是递减的,在左端点有最值的上限.比较两段函数的最大值,来求得整个函数的最大值.

(1)当 0≤x≤5 时,产品能全部售出,

则成本为 0.25x+0.5,收入为 5x-x2

利润 f(x)=5x-x2-0.25x-0.5

=-x2+4.75x-0.5.

当 x>5 时,只能销售 500台,

则成本为 0.25x+0.5,销售收入为 5×5-×52

利润 f(x)=-0.25x-0.5=-0.25x+12.

综上,利润函数 f(x)=

(2)当 0≤x≤5时,f(x)=- (x-4.75)2+10.781 25,

当 x=4.75∈[0,5]时,f(x)max=10.781 25(万元);

当 x>5 时,函数 f(x) 是递减函数,则 f(x)<12-0.25×5=10.75(万元).

10.75<10.781 25.

综上,当年产量是 475台时,利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】最新公布的《道路交通安全法》和《道路交通安全法实施条例》对车速、安全车距以及影响驾驶人反应快慢等因素均有详细规定,这些规定说到底主要与刹车距离有关,刹车距离是指从驾驶员发现障碍到制动车辆,最后完全停止所行驶的距离,即:刹车距离=反应距离+制动距离,反应距离=反应时间×速率,制动距离与速率的平方成正比,某反应时间为的驾驶员以的速率行驶,遇紧急情况,汽车的刹车距离为

)试将刹车距离表示为速率的函数.

)若该驾驶员驾驶汽车在限速为的公路上行驶,遇紧急情况,汽车的刹车距离为,试问该车是否超速?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧面为等边三角形且垂直于底面 中点.

(1)证明:直线平面

(2)点在棱上,且直线与底面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y∈R,则(3﹣4y﹣cosx)2+(4+3y+sinx)2的最小值为(
A.4
B.5
C.16
D.25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)= 是奇函数.

(1)确定y=g(x),y=f(x)的解析式

(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;

(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面为直角梯形,,且平面平面

(1)求证:

(2)在线段上是否存在一点,使二面角的大小为,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|.
(1)解不等式:f(x+1)+f(x+2)<4;
(2)已知a>2,求证:x∈R,f(ax)+af(x)>2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面 平面分别是棱长为12的正三角形, // ,四边形为直角梯形, // ,点的重心, 中点, .

)当时,求证: //平面

)若直线所成角为,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知,绿地面积为.

(1)写出关于的函数关系式,并指出这个函数的定义域.

(2)为何值时,绿地面积最大?

查看答案和解析>>

同步练习册答案