精英家教网 > 高中数学 > 题目详情

已知数列满足为常数,
(1)当时,求
(2)当时,求的值;
(3)问:使恒成立的常数是否存在?并证明你的结论.

(1)   (2)   (3)存在常数,使恒成立.

解析试题分析:假设题型中,先假设存在,然后在该假设下根据题中的已知条件去求值或证明,如果最后可得到数值或证明,则说明存在,否则不存在;分类讨论.
(1)当时,根据已知条件可判断出其符合等差数列的等差中项公式,所以知该数列是等差数列,此时根据题中所给的该数列的前两项,可求出公差,进而利用等差数列的通项公式,求出通项
(2)该题只是给出了数列的前两项和一个递推公式,而此时如果求数列的通项会相当的繁琐,困难.观察题目会发现,要求的是当时的第项,项数很大,所以猜想该数列的各项之间必然有一定的规律,故不妨列出数列的若干项观察规律,会发现该数列是一个周期为6的数列.有了初步判断之后,可以根据,找到,最终得到,从而证明开始的猜想,然后根据,可以得出结论,进而求出
(3)首先假设存在,然后在该假设下根据题中的已知条件去求,如果最后可得到常数,则说明存在,否则不存在.根据①,可得②;根据及,可得③; 将③带入②有④,此时①④式子含有相同的项,所以1式减④式得.分别讨论
是否成立,并最终形成结论.
(1)当时,根据题意可知成立,显然该式符合等差数列的等差中项公式,
所以该数列是等差数列,根据题意首项为,公差为,
根据差数列的通项公式可知
(2)根据题意列出该数列的一些项,如下:


,
我们发现该数列为一周期为6的数列.
事实上,根据题意可知,,则有
又因为
将②带入①化简得③;
根据③式有
所以说明该数列是周期为6的数列.
因为,所以
(3)假设存在常数,使恒成立.
①,可得②,
,可得
将③带入②有④ 
①式减④式得
所以,或
时,数列{}为常数数列,显然不满足题意.
,于是
即对于

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列的前n项和,数列满足
(1)若成等比数列,试求的值;
(2)是否存在,使得数列中存在某项满足()成等差数列?若存在,请指出符合题意的的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,且和1的等差中项,等差数列满足
(1)求数列,的通项公式;
(2)设,数列的前n项和为,若对一切恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,.
(1)若为递增数列,且成等差数列,求的值;
(2)若,且是递增数列,是递减数列,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知首项都是1的两个数列),满足.
(1)令,求数列的通项公式;
(2)若,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均不相等的等差数列{an}的前n项和为Sn,若S3=15,且a3+1为a1+1和a7+1的等比中项.
(1)求数列{an}的通项公式与前n项和Sn
(2)设Tn为数列{}的前n项和,问是否存在常数m,使Tn=m[],若存在,求m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足,数列满足
(1)求数列的通项公式;
(2)求数列的前项和;
(3)若,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,向量.
(1)求证数列为等差数列,并求通项公式;
(2)设,若对任意都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定正整数,若项数为的数列满足:对任意的,均有(其中),则称数列为“Γ数列”.
(1)判断数列是否是“Γ数列”,并说明理由;
(2)若为“Γ数列”,求证:恒成立;
(3)设是公差为的无穷项等差数列,若对任意的正整数
均构成“Γ数列”,求的公差

查看答案和解析>>

同步练习册答案