精英家教网 > 高中数学 > 题目详情

(本小题满分15分)已知函数
(1)当时,求最小值;
(2)若存在单调递减区间,求的取值范围;
(3)求证:).

(1);(2);(3)详见解析.

解析试题分析:(1)由求导判的函数上单调递增,可求函数的最小值;(2)因存在单调递减区间,所以有正数解,再分类讨论对类一元二次函数存在正解进行讨论.(3)利用数学归纳法进行证明即可.
试题解析:(1),定义域为
,                       
上是增函数.
.
(2)  因为
因为若存在单调递减区间,所以有正数解.
的解 
①      当时,明显成立 .
②当时,开口向下的抛物线,总有的解;
③当时,开口向上的抛物线,
即方程有正根.
因为
所以方程有两正根.
时,;                       ……… 4分
,解得.                             
综合①②③知:.                                      ……… 9分
(3)(法一)根据(Ⅰ)的结论,当时,,即
,则有,   

.                                ……… 15分
(法二)当时,
,即时命题成立.
设当时,命题成立,即
时,
根据(Ⅰ)的结论,当时,,即
,则有
则有,即时命题也成立.
因此,由数学归纳法可知不等式成立.                           ……… 15分
考点:1.求导判单调性;2.方程与根的关系;3.数学归纳法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题


(Ⅰ)讨论函数的单调性;
(Ⅱ)若,证明:时,成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知其中是自然对数的底 .
(1)若处取得极值,求的值;
(2)求的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)记的导函数,若不等式上有解,求实数的取值范围;
(2)若,对任意的,不等式恒成立.求)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=+aln(x-1)(a∈R).
(Ⅰ)若f(x)在[2,+∞)上是增函数,求实数a的取值范围;
(Ⅱ)当a=2时,求证:1-<2ln(x-1)<2x-4(x>2);
(Ⅲ)求证:+…+<lnn<1++ +(n∈N*,且n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)试问的值是否为定值?若是,求出该定值;若不是,请说明理由;
(2)定义,其中,求
(3)在(2)的条件下,令.若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,处的切线方程为
(Ⅰ)求的单调区间与极值;
(Ⅱ)求的解析式;
(III)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为正实数,的一个极值点.
(Ⅰ)求的值;
(Ⅱ)当时,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

, 已知函数 
(Ⅰ) 证明在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;
(Ⅱ) 设曲线在点处的切线相互平行, 且 证明.

查看答案和解析>>

同步练习册答案