精英家教网 > 高中数学 > 题目详情
若a1x≤sinx≤a2x对任意的x∈[0,
π
2
]
都成立,则a2-a1的最小值为______.
y=sinx求导可得y′=cosx,则x=0时,y′=1,∴x∈[0,
π
2
]
时,y=sinx的图象与直线y=x相切,
过点(
π
2
,1),(0,0)的直线方程为y=
2
π
x

x∈[0,
π
2
]
时,y=sinx在直线y=x下方,在直线y=
2
π
x
上方
∴a1x≤sinx≤a2x对任意的x∈[0,
π
2
]
都成立时,a2-a1的最小值为1-
2
π

故答案为:1-
2
π
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=-
1
3
x3
+x在(a,10-a2)上有最大值,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

f(x)=2x4-3x2+1在[
1
2
,2]上的最大值、最小值分别是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
x2
2
-2ax+3lnx.(0<a<3)
(1)当a=2时,求函数f(x)=
x2
2
-2ax+3lnx的单调区间.
(2)当x∈[1,+∞)时,若f(x)≥-5xlnx+3lnx-
3
2
恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的两侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为3a元和5a元,问供水站C建在何处才能使水管费用最省?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=alnx-(1+a)x+
1
2
x2,a∈R
(Ⅰ)当0<a<1时,求函数f(x)的单调区间和极值;
(Ⅱ)当x∈[
1
e
,+∞)时f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-ax+2lnx(其中a是实数).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若2(
e
+
1
e
)<a<5
,且f(x)有两个极值点x1,x2(x1<x2),求|f(x1)-f(x2)|的取值范围.(其中e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若实数a,b,c,d满足(b+a2-3lna)2+(c-d+2)2=0,则(a-c)2+(b-d)2的最小值为(  )
A.
2
B.2C.2
2
D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等于(     )
A.B.2C.D.

查看答案和解析>>

同步练习册答案