分析 利用奇函数的定义,求出a,根据基本不等式,即可求f(x)在(0,+∞)上的最小值及取到最小值时x的值.
解答 解:∵函数f(x)=$\frac{{x}^{2}+ax+4}{x}$是奇函数,
∴$\frac{{x}^{2}-ax+4}{-x}$=-$\frac{{x}^{2}+ax+4}{x}$,
∴a=0,
∴f(x)=x+$\frac{4}{x}$,
∵x>0,
∴f(x)=x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,
当且仅当x=2时,f(x)在(0,+∞)上的最小值为4.
点评 本题考查函数的奇偶性,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | (0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞) | B. | ($\frac{3}{2},+∞$) | ||
C. | $[1,\frac{3}{2})∪(\frac{3}{2},+∞)$ | D. | $(1,\sqrt{10})∪(\sqrt{10},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,+∞) | B. | (-∞,3) | C. | [$\frac{3}{5}$,3) | D. | (1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com