【题目】已知数列{an}中,a1=1,an+1= (n∈N*).
(1)求证:{ + }是等比数列,并求{an}的通项公式an;
(2)数列{bn}满足bn=(3n﹣1) an , 数列{bn}的前n项和为Tn , 若不等式(﹣1)nλ<Tn+ 对一切n∈N*恒成立,求λ的取值范围.
【答案】
(1)证明:由数列{an}中,a1=1,an+1= (n∈N*),可得 =1+ .
∴ ,
∴{ }是首项为 ,公比为3的等比数列,
∴ ,化为
(2)解:由(1)可知: = ,
Tn= +…+ .
…+ + ,
两式相减得 ﹣ = = .
∴ .
∴(﹣1)nλ< + =4﹣ .
若n为偶数,则 ,∴λ<3.
若n为奇数,则 ,∴﹣λ<2,解得λ>﹣2.
综上可得﹣2<λ<3.
【解析】(1)由数列{an}中,a1=1,an+1= (n∈N*),可得 =1+ .变形为 ,利用等比数列的通项公式即可得出.(2)由(1)可知:bn , 利用“错位相减法”即可得出Tn , 利用不等式(﹣1) ,通过对n分为偶数与奇数讨论即可.
【考点精析】利用等比关系的确定对题目进行判断即可得到答案,需要熟知等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为提升学生的英语学习能力,进行了主题分别为“听”、“说”、“读”、“写”四场竞赛.规定:每场竞赛的前三名得分分别为, , (,且, , ),选手的最终得分为各场得分之和.最终甲、乙、丙三人包揽了每场竞赛的前三名,在四场竞赛中,已知甲最终分为分,乙最终得分为分,丙最终得分为分,且乙在“听”这场竞赛中获得了第一名,则“听”这场竞赛的第三名是( )
A. 甲 B. 乙 C. 丙 D. 甲和丙都有可能
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的条件.(填“充要条件、充分不必要条件、必要不充分条件、即不充分也不必要条件”)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 ( )
A. 甲地:总体均值为3,中位数为4
B. 乙地:总体均值为1,总体方差大于0
C. 丙地:中位数为2,众数为3
D. 丁地:总体均值为2,总体方差为3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知, 为两条不同的直线, , 为两个不同的平面,对于下列四个命题:
①, , , ②,
③, , ④,
其中正确命题的个数有( )
A. 个 B. 个 C. 个 D. 个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列命题:
①函数的图象与的图象恰有个公共点;
②函数有个零点;
③若函数与的图像关于直线对称,则函数与的图象也关于直线对称;
④函数的图象是由函数的图象水平向右平移一个单位后,将所得图象在轴右侧部分沿轴翻折到轴左侧替代轴左侧部分图象,并保留右侧部分而得到的.其中错误的命题有___________.(填写所有错误的命题的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com