精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的参数方程为为参数,),直线的参数方程为为参数).

(1)点在曲线上,且曲线在点处的切线与直线垂直,求点的极坐标;

(2)设直线与曲线有两个不同的交点,求直线的斜率的取值范围.

【答案】(1);(2)

【解析】

试题分析:(1)首先设出点的坐标,然后根据直线与圆相切求得直线的斜率,由此得出点的直角坐标,从而求得其极坐标;(2)首先设出直线的方程,然后利用点到直线的距离公式求得当直线与圆相切时的斜率,再设点,求出,由此求得直线的斜率的取值范围.

试题解析:(1)设点坐标为

由已知得是以为圆心,为半径的上半圆

因为在点处的切线与垂直,所以直线与直线的斜率相同,

点的直角坐标为,极坐标为

(2)设直线与半圆相切时

(舍去),

设点,则

故直线的斜率的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程.

已知曲线的参数方程为为参数,以直角坐标系原点为极点,轴正半轴为极轴建立极坐标系.

1求曲线的极坐标方程;

2若直线的极坐标方程为,求直线被曲线截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(

(1)若,求曲线处的切线方程.

(2)对任意,总存在,使得(其中的导数)成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂于2016年下半年对生产工艺进行了改造(每半年为一个生产周期),从2016年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示(如图).已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润20元,生产一件合格品可获利润10元,生产一件次品要亏损10元

(Ⅰ)求该企业2016年一年生产一件产品的利润为10的概率;

(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.

附:

PK2≥k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的方程22x+2xa+a+1=0有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在分数在以上(含的同学获奖. 按文理科用分层抽样的方法抽取人的成绩作为样本得到成绩的频率分布直方图(见下图).

(1)填写下面的列联表,能否有超过的把握认为获奖与学生的文理科有关

(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取名学生获奖学生人数为,求的分布列及数学期望.

文科生

理科生

合计

获奖

不获奖

合计

附表及公式:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的最大值;

(2)当时,函数有最小值. 的最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,点在椭圆上.

(1)求椭圆的方程;

(2)设过点且不与坐标轴垂直的直线交椭圆两点,线段的垂直平分线与轴交于点,求点的横坐标的取值范围;

(3)在第(2)问的条件下,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方形ABCD中,AB=1,AD=。现将长方形沿对角线BD折起,使AC=a,得到一个四面体ABCD,如图所示.

(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.

(2)当四面体ABCD的体积最大时,求二面角ACDB的余弦值.

查看答案和解析>>

同步练习册答案