精英家教网 > 高中数学 > 题目详情
已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的
 
条件(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选出一种填空.)
考点:充要条件
专题:空间位置关系与距离,简易逻辑
分析:可以想象两平面垂直,平面内的直线和另一平面的位置有:和平面平行,和平面斜交,和平面垂直,在平面内,所以由α⊥β得不出m⊥β,而由m⊥β,能得到α⊥β,这根据面面垂直的判定定理即可得到,所以α⊥β是m⊥β的必要不充分条件.
解答: 解:由m?α,α⊥β得不出m⊥β,因为两平面垂直,其中一平面内的直线可以和另一平面平行;
若m?a,m⊥β,则根据面面垂直的判定定理得到α⊥β;
∴α⊥β,是m⊥β的必要不充分条件.
故答案为必要不充分.
点评:考查面面垂直时平面内的直线和另一平面的位置关系,面面垂直的判定定理,以及充分条件、必要条件、必要不充分条件的概念.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x+1+a•ex的两个极值点x1,x2,满足x1<x2
(1)x>2时,比较ex与x(x-1)的大小;
(2)求a的取值范围;
(3)证明:x1+x2>4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=(
1
2
)0.3
,b=0.3-2c=log
1
2
2
,则a,b,c的大小关系是(  )
A、a>b>c
B、a>c>b
C、b>a>c
D、c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数与y=x有相同图象的一个函数是(  )
A、y=
x2
B、y=
x2
x
C、y=logaax
D、y=a logax(a>0且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=1-
2
x+1
,x∈[2,3]的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a2+c2-b2=
2
3
3
acsinB.
(Ⅰ)求B的大小;
(Ⅱ)若a=4,且
π
6
≤A≤
π
3
,求边c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)由下表给出,则f[f(4)]等于(  )
x1234
f(x)3241
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(
1
2
)-x2+4x+1
(0≤x≤3)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,PA=AD=1,E,F分别为PA、AC的中点.
(Ⅰ)求证:EF∥平面PAB;
(Ⅱ)求点F到平面ABE的距离.

查看答案和解析>>

同步练习册答案