【题目】如图是市儿童乐园里一块平行四边形草地ABCD,乐园管理处准备过线段AB上一点E设计一条直线EF(点F在边BC或CD上,不计路的宽度),将该草地分为面积之比为2:1的左、右两部分,分别种植不同的花卉.经测量得AB=18m,BC=10m,∠ABC=120°.设EB=x,EF=y(单位:m).
(1)当点F与C重合时,试确定点E的位置;
(2)求y关于x的函数关系式;
(3)请确定点E、F的位置,使直路EF长度最短.
【答案】
(1)解:∵S△BCE= ,SABCD=2× ,
∴ = = ,
∴BE= AB=12.即E为AB靠近A的三点分点.
(2)解:SABCD=18×10×sin120°=90 ,
当0≤x<12时,F在CD上,
∴SEBCF= (x+CF)BCsin60°= 90 ,解得CF=12﹣x,
∴y= =2 ,
当12≤x≤18时,F在BC上,
∴S△BEF= = ,解得BF= ,
∴y= = ,
综上,y= .
(3)解:当0≤x<12时,y=2 =2 ≥5 ,
当12≤x≤18时,y= > >5 ,
∴当x= ,CF= 时,直线EF最短,最短距离为5 .
【解析】(1)根据面积公式列方程求出BE;(2)对F的位置进行讨论,利用余弦定理求出y关于x的解析式;(3)分两种情况求出y的最小值,从而得出y的最小值,得出E,F的位置.
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)求函数f(x)的最小正周期和单调增区间;
(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知: 、 、 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐标.
(2)若| |= ,且 +2 与2 ﹣ 垂直,求 与 的夹角θ
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一个周期的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 | π | 2π | ||
x | x1 | x2 | x3 | ||
Asin(ωx+φ)+B | 0 | 0 | ﹣ | 0 |
(1)请求出上表中的x1 , x2 , x3 , 并直接写出函数f(x)的解析式;
(2)若3sin2 ﹣ mf( ﹣ )≥m+2对任意x∈[0,2π]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cosx,﹣1), =( sinx,cos2x),设函数f(x)= + .
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈(0, )时,求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,半径为1,圆心角为 的圆弧 上有一点C.
(1)若C为圆弧AB的中点,点D在线段OA上运动,求| |的最小值;
(2)若D,E分别为线段OA,OB的中点,当C在圆弧 上运动时,求 的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com