精英家教网 > 高中数学 > 题目详情
证明:
(1)
tanα-tanβ
tanα+tanβ
=
sin(α-β)
sin(α+β)

(2)tan3α-tan2α-tanα=tan3αtan2αtanα.
分析:(1)已知等式左边利用同角三角函数间的基本关系化简,去分母后利用两角和与差的正弦函数公式化简,得到结果与右边相等,得证;
(2)利用两角和与差的正切函数公式得到tan3α=tan(α+2α)=
tanα+tan2α
1-tanαtan2α
,去分母整理即可得证.
解答:解:(1)等式左边=
sinα
cosα
-
sinβ
cosβ
sinα
cosα
+
sinβ
cosβ
=
sinαcosβ-cosαsinβ
sinαcosβ+cosαsinβ
=
sin(α-β)
sin(α+β)
=右边,
则原等式成立;
(2)∵tan3α=tan(α+2α)=
tanα+tan2α
1-tanαtan2α

∴tan3α(1-tanαtan2α)=tanα+tan2α,
整理得:tan3α-tan2α-tanα=tanαtan2αtan3α.
点评:此题考查了二倍角的正切函数公式,同角三角牌函数间的基本关系,以及两角和与差的正切函数公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,一简单几何体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC,
(1)证明:平面ACD⊥平面ADE;
(2)若AB=2,BC=1,tan∠EAB=
3
2
,试求该几何体的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图一简单几何体的一个面ABC内接于圆O,G,H分别是AE,BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(1)求证:GH∥平面ACD;
(2)证明:平面ADE⊥平面ACD;
(3)若AB=2,BC=1,tan∠EAB=
3
2
,试求该几何体的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,一简单几何体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC,
(1)证明:平面ACD⊥平面ADE;
(2)若AB=2,BC=1,tan∠EAB=
3
2
,试求该几何体的体积V.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

用放缩法证明下列不等式:

(1)若tanθ=ntanφ(tanθ≠0,n>0),则tan2(θ-φ)≤;

(2)已知a>0,b>0,c>0,d>0,求证:1<<2.

查看答案和解析>>

同步练习册答案