精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,已知圆 的圆心为,过点且斜率为的直线与圆相交于不同的两点

(Ⅰ)求的取值范围;

(Ⅱ)以OA,OB为邻边作平行四边形OADB,是否存在常数,使得直线OD与PQ平行?如果存在,求值;如果不存在,请说明理由.

 

【答案】

(Ⅰ)先设出直线的方程,由直线与圆有两个不同的交战,故联立圆方程可得得一元二次方程,由判别式大于0可得K的取值范围为;(Ⅱ)没有符合题意的常数,理由见解析.

【解析】

试题分析:(Ⅰ);(Ⅱ)由向量加减法,可利用向量处理,设,则,由共线等价于,然后由根与系数关系可得,由(Ⅰ)知,故没有符合题意的常数.注意运用向量法和方程的思想.

试题解析:(Ⅰ)圆的方程可写成,所以圆心为

且斜率为的直线方程为

代入圆方程得,整理得.   ①

直线与圆交于两个不同的点等价于

解得,即的取值范围为

(Ⅱ)设,则

由方程①,    ②

.  ③

所以共线等价于

将②③代入上式,解得 

由(Ⅰ)知,故没有符合题意的常数

考点:1.直线与圆的位置关系;2.一元二次方程的根的判别式;3.向量共线的充要条件.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案