【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC, .点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.
【答案】(Ⅰ)见解析;(Ⅱ);(Ⅲ)或.
【解析】试题分析:本小题主要考查直线与平面平行、二面角、异面直线所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.首先要建立空间直角坐标系,写出相关点的坐标,证明线面平行只需求出平面的法向量,计算直线对应的向量与法向量的数量积为0,求二面角只需求出两个半平面对应的法向量,借助法向量的夹角求二面角,利用向量的夹角公式,求出异面直线所成角的余弦值,利用已知条件,求出的值.
试题解析:如图,以A为原点,分别以, , 方向为x轴、y轴、z轴正方向建立空间直角坐标系.依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).
(Ⅰ)证明: =(0,2,0),=(2,0, ).设,为平面BDE的法向量,
则,即.不妨设,可得.又=(1,2, ),可得.
因为平面BDE,所以MN//平面BDE.
(Ⅱ)解:易知为平面CEM的一个法向量.设为平面EMN的法向量,则,因为, ,所以.不妨设,可得.
因此有,于是.
所以,二面角C—EM—N的正弦值为.
(Ⅲ)解:依题意,设AH=h(),则H(0,0,h),进而可得, .由已知,得,整理得,解得,或.
所以,线段AH的长为或.
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1(﹣2,0),点B(2, )在椭圆C上,直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N
(Ⅰ)求椭圆C的方程;
(Ⅱ)在x轴上是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =( ,cos ), =(cos ,1),且f(x)= .
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[﹣π,π]上的最大值和最小值及取得最值时x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面向量 , ( ≠ )满足 =2,且 与 ﹣ 的夹角为120° , t∈R,则|(1﹣t) +t |的最小值是 . 已知 =0,向量 满足( ﹣ )( ﹣ )=0,| ﹣ |=5,| ﹣ |=3,则 的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为.
(Ⅰ)设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和数学期望;
(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为.设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ) =0,M为l3与C的交点,求M的极径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形为菱形, , 与相交于点, 平面, 平面, , 为中点.
(Ⅰ)求证: 平面;
(Ⅱ)求二面角的正弦值;
(Ⅲ)当直线与平面所成角为时,求异面直线与所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,直线倾斜角是且过抛物线的焦点,直线被抛物线截得的线段长是16,双曲线: 的一个焦点在抛物线的准线上,则直线与轴的交点到双曲线的一条渐近线的距离是( )
A. 2 B. C. D. 1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com