18£®Ä³¿ÆÑв¿ÃÅÏÖÓÐÄм¼ÊõÔ±45ÈË£¬Å®¼¼ÊõÔ±15ÈË£¬ÎªÑз¢Ä³Ð²úÆ·µÄÐèÒª£¬¿ÆÑв¿ÃÅ°´ÕÕ·Ö²ã³éÑùµÄ·½·¨×齨ÁËÒ»¸öÓÉËÄÈË×é³ÉµÄвúÆ·Ñз¢Ð¡×飮
£¨1£©Çóÿһ¸ö¼¼ÊõÔ±±»³éµ½µÄ¸ÅÂʼ°¸ÃвúÆ·Ñз¢Ð¡×éÖÐÄС¢Å®¼¼ÊõÔ±µÄÈËÊý£»
£¨2£©Ò»ÄêºóÑз¢Ð¡×é¾ö¶¨Ñ¡Á½ÃûÑз¢µÄ¼¼ÊõÔ±¶Ô¸ÃÏîÑз¢²úÆ·½øÐмìÑ飬·½·¨ÊÇÏÈ´ÓÑз¢Ð¡×éÖÐÑ¡Ò»È˽øÐмìÑ飬¸Ã¼¼ÊõÔ±¼ìÑé½áÊøºó£¬ÔÙ´ÓÑз¢Ð¡×éÄÚʣϵÄÈýÃû¼¼ÊõÔ±ÖÐÑ¡Ò»È˽øÐмìÑ飬ÈôÁ½Ãû¼¼ÊõÔ±¼ìÑéµÃµ½µÄÊý¾ÝÈçÏ£º
µÚÒ»´Î±»³éµ½½øÐмìÑéµÄ¼¼ÊõÔ±58538762787082
µÚ¶þ´Î±»³éµ½½øÐмìÑéµÄ¼¼ÊõÔ±64617866747176
ÇóÏȺó±»Ñ¡³öµÄÁ½Ãû¼¼ÊõÔ±ÖÐÇ¡ÓÐÒ»ÃûÅ®¼¼ÊõÔ±µÄ¸ÅÂÊ£»
ÇëÎÊÄÄλ¼¼ÊõÔ±¼ìÑé¸üÎȶ¨£¿²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉ·Ö²ã³éÑùµÄ·½·¨ÄÜÇó³öÿһ¸ö¼¼ÊõÔ±±»³éµ½µÄ¸ÅÂʼ°¸ÃвúÆ·Ñз¢Ð¡×éÖÐÄС¢Å®¼¼ÊõÔ±µÄÈËÊý£®
£¨2£©¢ÙÓÉÏ໥¶ÀÁ¢Ê¼þ³Ë·¨¸ÅÂʹ«Ê½ÄÜÇó³öÏȺó±»Ñ¡³öµÄÁ½Ãû¼¼ÊõÔ±ÖÐÇ¡ÓÐÒ»ÃûÅ®¼¼ÊõÔ±µÄ¸ÅÂÊ£»¢Ú·Ö±ðÇó³öÁ½×éÊý¾ÝµÄƽ¾ùÊýºÍ·½²¢£¬ÓÉ´ËÄÜÇó³öµÚ¶þ´Î½øÐмìÑéµÄ¼¼ÊõÔ±µÄ¼ìÑé¸üÎȶ¨£®

½â´ð ½â£º£¨1£©¡ßij¿ÆÑв¿ÃÅÏÖÓÐÄм¼ÊõÔ±45ÈË£¬Å®¼¼ÊõÔ±15ÈË£¬
°´ÕÕ·Ö²ã³éÑùµÄ·½·¨×齨ÁËÒ»¸öÓÉËÄÈË×é³ÉµÄвúÆ·Ñз¢Ð¡×飬
¡àÿһ¸ö¼¼ÊõÔ±±»³éµ½µÄ¸ÅÂÊ$\frac{4}{60}=\frac{1}{15}$£¬
ÆäÖÐÄм¼ÊõÔ±³éµ½£º45¡Á$\frac{1}{15}$=3ÈË£¬
Å®¼¼ÊõÔ±³éµ½£º15¡Á$\frac{1}{15}$=1ÈË£®£¨4·Ö£©
£¨2£©¢ÙÏȺó±»Ñ¡³öµÄÁ½Ãû¼¼ÊõÔ±ÖÐÇ¡ÓÐÒ»ÃûÅ®¼¼ÊõÔ±µÄ¸ÅÂÊ£º
p=$\frac{1}{4}¡Á\frac{{C}_{3}^{1}}{{C}_{3}^{1}}$+$\frac{3}{4}¡Á\frac{1}{3}$=$\frac{1}{2}$£®£¨7·Ö£©
¢Ú$\overline{{x}_{1}}$=$\frac{1}{7}£¨58+53+87+62+78+70+82£©$¨T70£¬
$\overline{{x}_{2}}$=$\frac{1}{7}$£¨64+61+78+66+74+71+76£©=70£¬
${{S}_{1}}^{2}$=$\frac{1}{7}$[£¨58-70£©2+£¨53-70£©2+£¨87-70£©2+£¨62-70£©2+£¨78-70£©2+£¨70-70£©2+£¨82-70£©2]=142£¬
${{S}_{2}}^{2}$=$\frac{1}{7}$[£¨64-70£©2+£¨61-70£©2+£¨78-70£©2+£¨66-70£©2+£¨74-70£©2+£¨71-70£©2+£¨76-70£©2]=35£¬
¡ß$\overline{x_1}=\overline{x_2}£¬{s_1}^2£¾{s_2}^2$£¬
¡àµÚ¶þ´Î½øÐмìÑéµÄ¼¼ÊõÔ±µÄ¼ìÑé¸üÎȶ¨£®£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é·Ö²ã³éÑùµÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬¿¼²éƽ¾ùÊý¡¢·½²îµÄÓ¦Óã¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏ໥¶ÀÁ¢Ê¼þ³Ë·¨¸ÅÂʹ«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¼¯ºÏA={x|3¡Üx£¼7}£¬B={x|2£¼x£¼10}£¬ÇóA¡ÈB£¬A¡ÉB£¬£¨∁RA£©¡ÉB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòÊÇ£¨0£¬+¡Þ£©£¬µ±x£¾1ʱf£¨x£©£¾0£¬ÇÒf£¨xy£©=f£¨x£©+f£¨y£©
£¨1£©ÇóÖ¤£º$f£¨{\frac{1}{x}}£©=-f£¨x£©$
£¨2£©Ö¤Ã÷£ºf£¨x£©ÔÚ¶¨ÒåÓòÉÏÊÇÔöº¯Êý
£¨3£©Èç¹û$f£¨{\frac{1}{3}}£©=-1$£¬ÇóÂú×ã²»µÈʽ$f£¨x£©-f£¨{\frac{1}{x-2}}£©¡Ý2$µÄxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êý$f£¨x£©=1+\frac{a}{{{2^x}+1}}£¨{a¡ÊR}£©$£®
£¨1£©µ±a=-2ʱ£¬Çóf£¨x£©µÄ·´º¯Êý£»
£¨2£©µ±a¡Ý9ʱ£¬Ö¤Ã÷º¯Êýg£¨x£©=f£¨x£©+2xÔÚ[0£¬1]ÉÏÊǼõº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÈçͼËùʾ£¬A£¬B·Ö±ðÊǵ¥Î»Ô²ÓëxÖá¡¢yÖáÕý°ëÖáµÄ½»µã£¬µãPÔÚµ¥Î»Ô²ÉÏ£¬¡ÏAOP=¦È£¨0£¼¦È£¼¦Ð£©£¬Cµã×ø±êΪ£¨-2£¬0£©£¬ËıßÐÎOAQPÊÇƽÐÐËıßÐΣ®
£¨1£©Èô$\overrightarrow{CB}¡Î\overrightarrow{OP}$£¬Çó$|{\overrightarrow{OQ}}|$£®
£¨2£©Çó$sin£¨{2¦È-\frac{¦Ð}{6}}£©$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®º¯Êýy=$£¨\frac{1}{2}£©^{{x}^{2}-1}$µÄµ¥µ÷µÝÔöÇø¼äΪ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬0]B£®[0£¬+¡Þ£©C£®£¨-1£¬+¡Þ£©D£®£¨-¡Þ£¬-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬F1£¬F2ÊÇË«ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬×÷¹ýF1×÷Á½ÌõÏ໥´¹Ö±µÄÖ±Ïßl1£¬l2£¬ÆäÖÐÖ±Ïßl1½»Ë«ÇúÏßÓÒÖ§ÓÚµãM£¬Ö±Ïßl2½»Ë«ÇúÏß×óÖ§ÓÚµãN£¬ÒÔÏÂ˵·¨Ò»¶¨ÕýÈ·µÄÊÇ¢Ü
¢ÙÈô|F2M|£¼|F2N|£¬Ôò¡ÏMF2NΪÈñ½Ç
¢ÚÈô|F2M|£¼|F2N|£¬Ôò¡ÏMF2NΪ¶Û½Ç
¢ÛÈô|F2M|£¼|F1N|£¬Ôò¡ÏMF2NΪÈñ½Ç
¢ÜÈô|F2M|£¼|F1N|£¬Ôò¡ÏMF2NΪ¶Û½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑ֪ƽÃæÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$£¬|$\overrightarrow{a}$|=1£¬|$\overrightarrow{b}$|=$\sqrt{3}$£¬ÇÒ|2$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{7}$£¬ÔòÏòÁ¿$\overrightarrow{a}$ÓëÏòÁ¿$\overrightarrow{a}$+$\overrightarrow{b}$µÄ¼Ð½ÇΪ$\frac{¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Õý·½ÌåÖУ¬E£¬F£¬G·Ö±ðÊÇA¡äD¡ä¡¢B¡äC¡ä¡¢D¡äC¡äµÄÖе㣮
£¨1£©ÇóÖ±ÏßBA¡äºÍCC¡äËù³ÉµÄ½ÇµÄ´óС£»
£¨2£©ÇóÖ±ÏßEGºÍBD¡äËù³ÉµÄ½ÇµÄ´óС£»
£¨3£©Ö¤Ã÷£ºËıßÐÎABFEΪƽÐÐËıßÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸