精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的离心率为,椭圆的左,右焦点分别为F1F2,点M为椭圆上的一个动点,MF1F2面积的最大值为,过椭圆外一点(m0)(ma)且倾斜角为的直线l交椭圆于CD两点.

1)求椭圆的方程;

2)若,求m的值.

【答案】(1);(2)3.

【解析】

1)根据离心率和面积联立方程解得椭圆方程.

2)设直线方程为yxm),联立方程根据韦达定理得到x1+x2mx1x2,根据得到(x12y1x22y2)=0,代入化简得到答案.

1离心率为MF1F2面积的最大值为

,即bc2b2a2c2

①②③解得,abc2椭圆方程为

2)根据题意设直线l方程y0tanxm),即yxm),

Cx1y1),Dx2y2),

联立直线l与椭圆的方程得2x22mx+m260

x1+x2mx1x2

y1y2

,则(x12y1x22y2)=0

x1x22x1+x2+4+y1y20,解得m3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p曲线C1=1表示焦点在x轴上的椭圆,命题q曲线C2表示双曲线

1)若命题p是真命题,求m的取值范围;

2)若pq的必要不充分条件,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:

1命题,使得,则,都有

2)已知函数f(x)|log2x|abf(a)f(b)ab1

3若平面α内存在不共线的三点到平面β的距离相等,则平面α平行于平面β

4已知定义在上的函数 满足条件 ,且函数 为奇函数,则函数的图象关于点对称

其中真命题的序号为______________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线

1)若直线不经过第四象限,求的取值范围;

2)若直线轴负半轴于点,交轴正半轴于点为坐标原点,设的面积为,求的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左、右焦点分别为,点为椭圆上任意一点,关于原点的对称点为,有,且的最大值.

(1)求椭圆的标准方程;

(2)若关于轴的对称点,设点,连接与椭圆相交于点,问直线轴是否交于一定点.如果是,求出该定点坐标;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形, ,点E在棱PB上.

(Ⅰ)求证:平面

(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)时,,求的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为及以上的花苗为优质花苗.

求图中的值,并求综合评分的中位数.

用样本估计总体,以频率作为概率,若在两块试验地随机抽取棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;

填写下面的列联表,并判断是否有的把握认为优质花苗与培育方法有关.

附:下面的临界值表仅供参考.

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2D为侧棱AA1的中点.

1)求异面直线DC1B1C所成角的余弦值;

2)求二面角B1-DC-C1的平面角的余弦值.

查看答案和解析>>

同步练习册答案