精英家教网 > 高中数学 > 题目详情
复数
3-i
2+i
的实部与虚部之和为(  )
A、0B、1C、2D、3
考点:复数的基本概念
专题:数系的扩充和复数
分析:直接利用复数的代数形式的除法运算化简为a+bi(a,b∈R)的形式,然后进行运算.
解答: 解:
3-i
2+i
=
(3-i)(2-i)
(2+i)(2-i)
=
5-5i
5
=1-i.
所以实部与虚部的和等于1-1=0.
故选:A.
点评:本题考查了复数的基本概念,考查了复数的代数形式的乘除运算,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知f(x+2)=x2-4x+4,求f(5)及f(x);
(2)写出f(x)=x2-2x的单调递增区间,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

过圆x2+y2=1上点(
1
2
3
2
)的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意正整数n,定义n的阶乘n!如下:n!=n(m-1)(n-2)×…×3×2×1.例如3!=3×2×1.
现有四个命题:
①4!×3!=12!;
②2014!的个位数字为0;
③(x+y)!=x!+y!(x,y∈N*);
④n•n!=(n+1)!-n!(n∈N*
其中所有正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从区间(0,1)内任取一个实数,则这个数小于
5
6
的概率是(  )
A、
3
5
B、
4
5
C、
5
6
D、
16
25

查看答案和解析>>

科目:高中数学 来源: 题型:

在四边形ABCD中,若AC=
5
,BD=2,则(
AB
+
DC
)•(
AC
+
BD
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平面向量
a
b
都是非零向量,
a
b
<0是
a
b
夹角为钝角的
 
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x+1的零点是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cos2x,
3
),
b
=(1,sin2x),函数f(x)=
a
b
,g(x)=
b
2

(Ⅰ)求函数g(x)的最小正周期;
(Ⅱ)求f(x)的单调增区间及最值.

查看答案和解析>>

同步练习册答案