精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若曲线处的切线方程为,求的单调区间;

2)若时, 恒成立,求实数的取值范围.

【答案】(1)单调递增区间为;递减区间为;(2

【解析】试题分析:(1)求出函数的导数,令,代入得出函数的解析式,利用导数判定函数的单调性,求解函数的单调区间;(2)由时, 恒成立,转化为在区间上恒成立,令,利用函数的单调性与最值,利用条件,即可求解的取值范围.

试题解析:(1) 由已知得,则

,所以函数处的切线方程为

,解得

那么,由

,因则的单调递增区间为

,得,因而的单调递减区间为

2)若,得

在区间上恒成立

,则,由,得,因而上单调递增,由,得,因而上单调递减

所以的最大值为,因而

从而实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数,曲线的参数方程为为参数,在以为极点,轴的正半轴为极轴的极坐标系中,射线,与各有一个交点,当时,这两个交点间的距离为2,当,这两个交点重合

1分别说明是什么曲线,并求出的值;

2设当时,的交点分别为,当的交点分别为,求四边形的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据四川省民政厅报告,2013年6月29日以来,四川省中东部出现强降雨天气过程,局地出现大暴雨.暴雨洪涝灾害已造成遂宁、德阳、绵阳等12市34县(市、区)244万人受灾,共造成直接经济损失85502.41万元.适逢暑假,小王在某小区调查了50户居民由于洪灾造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出频率分布直方图(如图).


(1)若先从损失超过6000元的居民中随机抽出2户进行调查,求这2户不在同一小组的概率;(2)洪灾过后小区居委会号召小区居民为洪灾重灾区捐款,小王调查的50户居民的捐款情况如表,在表格空白处填写正确的数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

P(K2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:临界值表参考公式:K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,平面平面

1)求证: 平面

2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,已知,点分别在上,且,将四边形沿折起,使点在平面上的射影在直线上.

(I)求证:

(II)求点到平面的距离;

(III)求直线与平面所成的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面平面,底面为梯

形, , .且均为正三角形, 的中点,

重心.

(1)求证: 平面

(2)求异面直线的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)求函数在区间上的最小值;

2)对一切实数恒成立,求实数的取值范围;

3)证明:对一切 恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届广东省深圳市高三下学期第一次调研考试(一模)数学理】已知函数为自然对数的底数.

(1)求曲线处的切线方程;

(2)关于的不等式上恒成立,求实数的值;

(3)关于的方程有两个实根,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调查,并统计得出某款车的使用年限 (单位:年)与所支出的总费用 (单位:万元)有如下的数据资料:

使用年限

2

3

4

5

6

总费用

2.2

3.8

5.5

6.5

7.0

若由资料知呈线性相关关系.

(1)试求线性回归方程= +的回归系数,

(2)当使用年限为年时,估计车的使用总费用.

查看答案和解析>>

同步练习册答案