【题目】已知正项数列满足4Sn=an2+2an+1.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn.
科目:高中数学 来源: 题型:
【题目】根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.
(1)依据数据的散点图可以看出,可用线性回归模型拟合与的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);
(2)求关于的回归方程,并预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为多少?
附:相关系数公式,参考数据:,.
回归方程中斜率和截距的最小二乘估计公式分别为:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线与曲线,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)写出曲线,的极坐标方程;
(2)在极坐标系中,已知与,的公共点分别为,,,当时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量(万只)与时间(年)(其中)的关系为.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值(其中为常数,且)来进行生态环境分析.
(1)当时,求比值取最小值时的值;
(2)经过调查,环保部门发现:当比值不超过时不需要进行环境防护.为确保恰好3年不需要进行保护,求实数的取值范围.(为自然对数的底, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的各项均为正数,前项和满足;数列是等比数列,前项和为.
(1)求数列的通项公式;
(2)已知等比数列满足,,,求数列前项和为;
(3)若,且等比数列的公比,若存在,使得,试求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率为,过焦点且与轴垂直的直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)已知点,,过点的任意一条直线与椭圆交于,两点,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域是一切实数的函数,其图像是连续不断的,且存在常数使得对任意实数都成立,则称是一个“—伴随函数”.有下列关于—伴随函数”的结论:
①是常数函数中唯一一个“—伴随函数”;②“—伴随函数”至少有一个零点;
③是一个—伴随函数”;其中正确的是( )
A.①B.②C.③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com