精英家教网 > 高中数学 > 题目详情

【题目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函数f(x)的解析式;
(2)当x∈ 时,f(x)的最小值是﹣4,求此时函数f(x)的最大值,并求出相应的x的值.

【答案】
(1)

解:f(x)= =( sinx,m+cosx)(cosx,﹣m+cosx),


(2)

解:∵f(x)= ,由 ,可得

,∴f(x)的最小值为 ,∴m=±2,

∴fmax(x)=1+ ﹣4=﹣ ,此时, ,即


【解析】(1)f(x)= =( sinx,m+cosx)(cosx,﹣m+cosx)= .(2)函数f(x)= ,根据 ,求得 ,得到 ,从而得到函数f(x)的最大值 及相应的x的值.
【考点精析】本题主要考查了三角函数的最值的相关知识点,需要掌握函数,当时,取得最小值为;当时,取得最大值为,则才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=1,且(n+1)an=2Sn(n∈N*),数列{bn}满足 ,对任意n∈N* , 都有
(1)求数列{an}、{bn}的通项公式;
(2)令Tn=a1b1+a2b2+…+anbn . 若对任意的n∈N* , 不等式λnTn+2bnSn<2(λn+3bn)恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,矩形ABCD的一边AB在x轴上,另一边CD在x轴上方,且AB=8,BC=6,其中A(﹣4,0)、B(4,0).

(1)若A、B为椭圆的焦点,且椭圆经过C、D两点,求该椭圆的方程;
(2)若A、B为双曲线的焦点,且双曲线经过C、D两点,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①函数 是奇函数;
②存在实数α,使得sinα+cosα=
③若α,β是第一象限角且α<β,则tanα<tanβ;
是函数 的一条对称轴方程;
⑤函数 的图象关于点 成中心对称图形.
其中命题正确的是(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设平面向量 =(cosx,sinx), =(cosx+2 ,sinx), =(sinα,cosα),x∈R.
(1)若 ,求cos(2x+2α)的值;
(2)若α=0,求函数f(x)= 的最大值,并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的不等式ax2+bx+c<0的解集为{x|x<﹣2或x>﹣ },则关于x的不等式ax2﹣bx+c>0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解不等式: ≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=2sin( ),x∈R的图象只需把函数y=2sinx,x∈R的图象上所有的点(
A.向右平移 个单位长度,再把所有各点的横坐标缩短到原来的
B.向左平移 个单位长度,再把所有各点的横坐标伸长到原来的3倍
C.向左平移 个单位长度,再把所有各点的横坐标缩短到原来的
D.向右平移 个单位长度,再把所有各点的横坐标伸长到原来的3倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 且2Sn=(an﹣1)(an+2),
(1)求数列{an}的通项公式
(2)设数列{ }的前n项和为Tn , 试比较Tn 的大小.

查看答案和解析>>

同步练习册答案