精英家教网 > 高中数学 > 题目详情
16.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是(  )
①各棱长相等,同一顶点上的任两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; 
③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.
A.①③B.②③C.①②D.①②③

分析 本题考查的知识点是类比推理,在由平面几何的性质类比推理空间立体几何性质时,我们常用的思路是:由平面几何中点的性质,类比推理空间几何中线的性质;由平面几何中线的性质,类比推理空间几何中面的性质;由平面几何中面的性质,类比推理空间几何中体的性质;或是将一个二维平面关系,类比推理为一个三维的立体关系,故类比平面内正三角形的“三边相等,三内角相等”的性质,我们可以推断正四面体的相关性质.

解答 解:在由平面几何的性质类比推理空间立体几何性质时,我们常用的思路是:
由平面几何中点的性质,类比推理空间几何中线的性质;
由平面几何中线的性质,类比推理空间几何中面的性质;
由平面几何中面的性质,类比推理空间几何中体的性质;
或是将一个二维平面关系,类比推理为一个三维的立体关系,
故类比平面内正三角形的“三边相等,三内角相等”的性质,推断:
①各棱长相等,同一顶点上的任两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.
都是恰当的
故选D.

点评 类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如果P:关于x的不等式x2+2ax+4>0对一切 x∈R都成立,q:关于 x 的方程 4x2+4(a-2)x+1=0无实数根,且P与q中有且只有一个是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$\underset{lim}{n→∞}$($\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$+…+$\frac{1}{1+2+3+…+n}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列关系中正确的个数为(  )
①0∈{0}
②Φ?{0}
③{0,1}⊆{(0,1)}.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数$f(x)=\frac{1}{ln(x+1)}+\sqrt{4-x}$的定义域为(-1,0)∪(0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.焦点在x轴上的椭圆${x^2}-\frac{y^2}{k}=1$的离心率为$\frac{1}{2}$,则焦距为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.P(x,y)为椭圆$\frac{x^2}{25}+\frac{y^2}{b^2}=1$上任意一点,P到左焦点F1的最大距离为m,最小距离为n,则m+n=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow m=(\sqrt{3}sin2x+2,cosx),\overrightarrow n=(1,2cosx)$,函数f(x)=$\overrightarrow m•\overrightarrow n$.
(1)求函数f(x)的最小正周期及在$({-\frac{π}{6},\frac{π}{2}}]$上的值域;
(2)在△ABC中,若f(A)=4,b=4,△ABC的面积为$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果函数f(x)=(a2-1)x在R上是减函数,那么实数a的取值范围是(  )
A.|a|>1B.|a|<2C.|a|>3D.1<|a|<$\sqrt{2}$

查看答案和解析>>

同步练习册答案