精英家教网 > 高中数学 > 题目详情
(2009•朝阳区二模)已知A,B,C,D是平面内不共线的四点,若存在正实数λ1,λ2,使得
DA
 1
DB
+λ2
DC
=0
,则∠ADB,∠BDC,∠ADC(  )
分析:由条件可得 -
DA
=λ1
DB
+λ2
DC
,两边同时乘以
DA
可得,-
DA
2
=λ1
DB
DA
+λ2
DC
DA
<0,故∠ADB,∠ADC中至少有一个钝角.同理可得∠ADB和∠BDC中至少有一个钝角,∠BDC和∠ADC中至少有一个钝角.从而得到∠ADB,∠BDC,∠ADC中至少有两个钝角.
解答:解:∵
DA
λ1
DB
+λ2
DC
=0
,∴-
DA
=λ1
DB
+λ2
DC
,两边同时乘以 
DA
可得
-
DA
2
=λ1
DB
DA
+λ2
DC
DA
<0,又 正实数λ1,λ2 ,∴∠ADB,∠ADC中至少有一个钝角.
同理可得∠ADB,∠BDC中至少有一个钝角,∠BDC,∠ADC中至少有一个钝角.
综上可得,∠ADB,∠BDC,∠ADC中至少有两个钝角.
故选D.
点评:此题是个中档题,主要考查数量积表示两个向量的夹角,以及数量积的定义式,同时考查学生灵活应用知识分析解决问题的能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•朝阳区二模)将函数y=3sin2x的图象按向量a=(-
π
6
,0)
平移后,所得图象对应的函数解析式是
y=3sin(2x+
π
3
)
y=3sin(2x+
π
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•朝阳区二模)已知a+bi=
2-i
1+i
(a,b∈R,i为虚数单位),则a,b的值分别为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•朝阳区二模)已知集合A={(x,y)|y=|x-1|,x,y∈R},B={(x,y)|y=ax+2,x,y∈R},若集合A∩B有且只有一个元素,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•朝阳区二模)已知两点A(-2,0),B(0,2),点C是圆x2+y2-4x+4y+6=0上任意一点,则△ABC面积的最小值是(  )

查看答案和解析>>

同步练习册答案