精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin(x-
π
3
)cosx+sinxcosx+
3
sin2x
(x∈R).
(1)求f(x)的单调递增区间;
(2)在△ABC中,B为锐角,且f(B)=
3
,AC=4
3
,D是BC边上一点,AB=AD,试求△ADC周长的最大值.
考点:三角函数中的恒等变换应用,正弦定理
专题:计算题,三角函数的图像与性质,解三角形
分析:(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=2sin(2x-
π
3
)
.由-
π
2
+2kπ≤2x-
π
3
π
2
+2kπ
,可得单调递增区间.
(2)由f(B)=
3
sin(2B-
π
3
)=
3
2
.又0<B<
π
2
,则可求得B=
π
3
,由AB=AD可求得:AD+DC=BD+DC=BC,又由正弦定理可得BC=8sin∠BAC.由
π
3
<∠BAC<
3
,可得4
3
<BC≤8
.故可得周长最大值.
解答: 解:(1)f(x)=2(
1
2
sinx-
3
2
cosx)cosx+sinxcosx+
3
sin2x
=2sinxcosx-
3
(cos2x-sin2x)
=sin2x-
3
cos2x
=2sin(2x-
π
3
)

-
π
2
+2kπ≤2x-
π
3
π
2
+2kπ
,得-
π
12
+kπ≤x≤
12
+kπ
(k∈Z).
∴单调递增区间为[-
π
12
+kπ,
12
+kπ]
,k∈Z

(2)由f(B)=
3
sin(2B-
π
3
)=
3
2
.又0<B<
π
2
,则-
π
3
<2B-
π
3
3

从而2B-
π
3
=
π
3

B=
π
3

由AB=AD知△ABD是正三角形,AB=AD=BD,
∴AD+DC=BD+DC=BC,
在△ABC中,由正弦定理,得
4
3
sin
π
3
=
BC
sin∠BAC
,即BC=8sin∠BAC.
∵D是BC边上一点,
π
3
<∠BAC<
3

3
2
<sin∠BAC≤1
,知4
3
<BC≤8

∠BAC=
π
2
,C=
π
6
时,AD+CD取得最大值8,周长最大值为8+4
3
点评:本题主要考查了三角函数中的恒等变换应用,正弦定理的应用,综合性较强,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
16
-
y2
b2
=1的左、右焦点,以坐标原点O为圆心,|OF1|为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于16时,双曲线的离心率为(  )
A、
2
B、
3
C、
6
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

计算定积分:
4
1
x
(1-
x
) dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足
xy>0
|x+y|≤2
,则z=|x|+|y|的取值范围是(  )
A、[0,4]
B、(0,4]
C、[0,2]
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin
x
4
cos
x
4
+cos2
x
4

(Ⅰ)若f(θ)=1,求cos(
2
3
π-θ)的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知l,m是两条不同的直线,α是一个平面,则下列命题正确的是(  )
A、若l∥α,m∥α,则l∥m
B、若l⊥m,m∥α,则l⊥α
C、若l⊥α,m⊥α,则l∥m
D、若l⊥m,l⊥α,则m∥α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(log2x)2+a•log2x-2+b,当x=
1
2
时有最小值1,试确定a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-2x(0≤x≤1),求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙丙三所学校的6位同学参加数学竞赛培训,其中甲有1名,乙有2名,丙有3名,培训后照相留念,则同一所学校的学生不相邻的排法总数为(  )
A、96B、108
C、114D、120

查看答案和解析>>

同步练习册答案