精英家教网 > 高中数学 > 题目详情

【题目】已知在直角坐标系xOy中,曲线C的参数方程为 为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin(θ+ )=2
(1)求曲线C在极坐标系中的方程;
(2)求直线l被曲线C截得的弦长.

【答案】
(1)解:把曲线C的参数方程利用同角三角函数的基本关系消去参数θ,化为普通方程为(x﹣2)2+y2=4,

再化为极坐标方程是 ρ=4cosθ.


(2)解:∵直线l的直角坐标方程为 x+y﹣4=0,

求得 ,或 ,可得直线l与曲线C的交点坐标为(2,2)(4,0),

所以弦长为 =2


【解析】(1)把曲线C的参数方程利用同角三角函数的基本关系消去参数θ,化为普通方程,再根据x=ρcosθ,y=ρsinθ,化为极坐标方程.(2)把直线和圆的直角坐标方程联立方程组,求得交点的坐标,再利用两点间的距离公式求得弦长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),直线l经过点P(1,2),倾斜角α=
(Ⅰ)写出圆C的标准方程和直线l的参数方程;
(Ⅱ)设直线l与圆C相交于A、B两点,求|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:函数f(x)=lg(﹣mx2+2x﹣m)的定义域为R;
命题q:函数g(x)=4lnx+ ﹣(m﹣1)x的图象上任意一点处的切线斜率恒大于2,
若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的方程为x2=2py(p>0),过点A(0,﹣1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别相交于M,N两点.如果QB的斜率与PB的斜率的乘积为﹣3,则∠MBN的大小等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45/m,新墙的造价为180/m,设利用的旧墙的长度为x(单位:元)。

)将y表示为x的函数;

)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F1F2分别为双曲线的左右焦点A1A2分别为这个双曲线的左右顶点P为双曲线右支上的任意一点求证A1A2为直径的圆既与以PF2为直径的圆外切又与以PF1为直径的圆内切

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工艺厂有铜丝5万米,铁丝9万米,准备用这两种材料编制成花篮和花盆出售,已知一只花篮需要用铜丝200米,铁丝300米;编制一只花盆需要100米,铁丝300米,设该厂用所有原来编制个花篮 个花盆.

(Ⅰ)列出满足的关系式,并画出相应的平面区域;

(Ⅱ)若出售一个花篮可获利300元,出售一个花盘可获利200元,那么怎样安排花篮与花盆的编制个数,可使得所得利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.
(Ⅰ)求证:AC⊥平面ABB1A1
(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)求函数f(x)的最小正周期与单调递减区间;
(Ⅱ)求函数f(x)在区间 上的最大值和最小值.

查看答案和解析>>

同步练习册答案