精英家教网 > 高中数学 > 题目详情

【题目】如果双曲线的离心率e,则称此双曲线为黄金双曲线.有以下几个命题:①双曲线是黄金双曲线;②双曲线是黄金双曲线;③在双曲线 (a>0,b>0)中,F1为左焦点,A2为右顶点,B1(0,b),若∠F1B1A2=90°,则该双曲线是黄金双曲线;④在双曲线 (a>0,b>0)中,过右焦点F2作实轴的垂线交双曲线于MN两点,O为坐标原点,若∠MON=120°,则该双曲线是黄金双曲线.其中正确命题的序号为________

【答案】②③

【解析】①双曲线a2=2,b2,所以e2,所以双曲线不是黄金双曲线;

②双曲线a2=1,b2,则e2,即e,故双曲线是黄金双曲线;

③中,A2(a,0),F1(-c,0), ,即b2ac,又b2c2a2,故c2a2ac,即e2e-1=0,则e,故双曲线是黄金双曲线;

④中,不妨设M位于第一象限,可得点M(c c),因为点M在双曲线上,代入双曲线方程有c4-5a2c2a4=0,所以e2,故双曲线不是黄金双曲线.

故答案为:②③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司近年来特别注重创新产品的研发,为了研究年研发经费(单位:万元)对年创新产品销售额(单位:十万元)的影响,对近10年的研发经费与年创新产品销售额(其中)的数据作了初步处理,得到如图的散点图及一些统计量的值.

其中

.现拟定关于的回归方程为.

1)求的值(结果精确到)

2)根据拟定的回归方程,预测当研发经费为万元时,年创新产品销售额是多少?

参考公式:

求线性回归方程系数公式 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在即将进入休渔期时,某小微企业决定囤积一些冰鲜产品,销售所囤积产品的净利润f(x)万元与投入x万元之间近似满足函数关系:,若投入2万元,可得到净利润为5.2万元.

(1)试求该小微企业投入多少万元时,获得的净利润最大;

(2)请判断该小微企业是否会亏本,若亏本,求出投入资金的范围,若不亏本,请说明理由.(参考数据:ln 2≈0.7,ln 15≈2.7)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为

(Ⅰ)求的解析式;

(Ⅱ)当,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)解关于的不等式

(2)若不等式的解集为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=A cos(ωxφ)(A>0,ω>0)的部分图象如图所示,下面结论错误的是(  )

A. 函数f(x)的最小正周期为

B. 函数f(x)的图象可由g(x)=Acos ωx的图象向右平移个单位长度得到

C. 函数f(x)的图象关于直线x对称

D. 函数f(x)在区间上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是( )

A. 0.9 B. 0.75 C. 0.8 D. 0.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为3的等边三角形,四边形为正方形,平面平面.点分别为上的点,且,点上的一点,且.

(Ⅰ)当时,求证: 平面

(Ⅱ)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知等差数列{an}中,a1=1a3=﹣3

)求数列{an}的通项公式;

)若数列{an}的前k项和Sk=﹣35,求k的值.

查看答案和解析>>

同步练习册答案